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Preface
Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 600 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization’s charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG’s objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 
More information is available at http://www.omg.org/.

Intended Audience

The architecture and specifications described in this manual are aimed at software 
designers and developers who want to produce applications that comply with OMG 
standards for the Object Request Broker (ORB). The benefit of compliance is, in 
general, to be able to produce interoperable applications that are based on distributed, 
interoperating objects. As defined by the Object Management Group (OMG) in the 
Object Management Architecture Guide, the ORB provides the mechanisms by which 
objects transparently make requests and receive responses. Hence, the ORB provides 
interoperability between applications on different machines in heterogeneous 
distributed environments and seamlessly interconnects multiple object systems. 
January 2005 Real-time CORBA, v1.2 i



Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference 
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive 
requests and responses in a distributed environment. It is the foundation for 
building applications from distributed objects and for interoperability between 
applications in hetero- and homogeneous environments. The architecture and 
specifications of the Object Request Broker are described in this manual. 

• Object Services, a collection of services (interfaces and objects) that support 
basic functions for using and implementing objects. Services are necessary to 
construct any distributed application and are always independent of application 
domains. For example, the Life Cycle Service defines conventions for creating, 
deleting, copying, and moving objects; it does not dictate how the objects are 
implemented in an application. Specifications for Object Services are contained in 
CORBAservices: Common Object Services Specification.

• Common Facilities, a collection of services that many applications may share, 
but which are not as fundamental as the Object Services. For instance, a system 
management or electronic mail facility could be classified as a common facility. 
Information about Common Facilities will be contained in CORBAfacilities: 
Common Facilities Architecture. 

• Application Objects, which are products of a single vendor on in-house 
development group that controls their interfaces. Application Objects correspond 
to the traditional notion of applications, so they are not standardized by OMG. 
Instead, Application Objects constitute the uppermost layer of the Reference 
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a 
telephone exchange, providing the basic mechanism for making and receiving calls. 
Combined with the Object Services, it ensures meaningful communication between 
CORBA-compliant applications. 

Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives 
and terminology and describes the conceptual models upon which OMG standards 
are based. It also provides information about the policies and procedures of OMG, 
such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications 
for the Object Services. 

• CORBAfacilities: Common Facilities Architecture contains the architecture for 
Common Facilities. 
ii Real-time CORBA, v1.2   January 2005



OMG collects information for each book in the documentation set by issuing Requests 
for Information, Requests for Proposals, and Requests for Comment and, with its 
membership, evaluating the responses. Specifications are adopted as standards only 
when representatives of the OMG membership accept them as such by vote. 

You can download the OMG formal documents free-of-charge from our web site in 
PostScript and PDF format. Please note the OMG address and telephone numbers 
below:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the 
specifications in CORBA Core and one mapping. Each additional language mapping is 
a separate, optional compliance point. Optional means users aren’t required to 
implement these points if they are unnecessary at their site, but if implemented, they 
must adhere to the CORBA specifications to be called CORBA-compliant. For 
instance, if a vendor supports C++, their ORB must comply with the OMG IDL to C++ 
binding specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed 
information about Interworking compliance, refer to the Common Object Request 
Broker Architecture (CORBA) specification, “Compliance to COM/CORBA 
Interworking.” 

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and 
components. Likewise, the body of CORBA specifications is divided into core and 
component-like specifications.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming 
statements from ordinary English. However, these conventions are not used in tables or 
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax 
elements. 

Courier bold - Programming language elements. 

Helvetica - Exceptions
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Terms that appear in italics are defined in the glossary. Italic text also represents the 
name of a document, specification, or other publication. 
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Real-time CORBA Base Architecture 1
Contents

This chapter contains the following topics.

Real-time CORBA is an optional set of extensions to CORBA tailored to equip ORBs 
to be used as a component of a real-time system.

1.1 Goals of the Specification

In any architecture, there is a tension between a general purpose solution and 
supporting specialist applications. Real-time developers have to pay strict attention to 
the allocation of resources and to the predictability of system execution. By providing 
the developer with handles on managing resources and on predictability, Real-time 
CORBA sacrifices some of the general purpose nature of CORBA in order support the 
development of real-time systems.

Real-time development has further specialist areas: “hard” real-time and “soft” real-
time; different resource contention protocols and scheduling algorithms, etc. This 
specification provides a Real-time CORBA that is sufficiently general to span these 
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variations in the form of a single compliance point. The one restriction imposed by the 
specification is to fixed priority scheduling. Real-time CORBA does not currently 
address dynamic scheduling.

The prescriptions made by this specification are not essential for general purpose 
CORBA development. Furthermore, for some use-cases of CORBA; for example, 
Enterprise Distributed Computing, the features of Real-time CORBA would be 
irrelevant. EDC tends to focus on usability and developer productivity. Placing these 
goals way above predictability means that EDC CORBA developers would never do 
things like configure thread pools.

The goals of the specification are to support developers in meeting real-time 
requirements by facilitating the end-to-end predictability of activities in the system and 
by providing support for the management of resources.

Real-time CORBA brings to real-time system development the same benefits of 
implementation flexibility, portability, and interoperability that CORBA brought to 
client-server development.

There is one important non-goal for this specification. It is not a goal to provide a 
portability layer for the real-time operating system (RTOS) itself. The POSIX Real-
time extensions already address this need. Real-time CORBA is compatible with the 
POSIX Real-time Extensions but by not wrapping the RTOS the specification 
facilitates the use of Real-time CORBA on operating systems that fall outside of the 
POSIX Real-time Extensions.

1.2 Extending CORBA

To provide specialist capabilities for specialist application without over constraining 
non real-time development, Real-time CORBA is positioned as a separate Extension to 
CORBA. The set of capabilities provided by Real-time CORBA constitute an optional, 
additional compliance point.

Real-time CORBA is defined as extensions to CORBA 2.2 (formal/98-12-01) and the 
Messaging Specification (orbos/98-05-05). It is necessary to look beyond CORBA 2.2 
because the policy framework used in Real-time CORBA is that from the Messaging 
Specification. Secondly, deferred synchronous, asynchronous, and oneway invocations 
are important tools in developing real-time systems.

1.3 Approach to Real-time CORBA

1.3.1 The Nature of Real-time

Developers of CORBA-compliant distributed, object oriented systems rely on the 
CORBA Specification to support the functional aspects of those systems. However, 
there is a class of problems where some of the requirements relate the functionality of 
the system to Real-World time, be it measured in minutes or in microseconds. For 
these systems, timeliness is as important as functionality.
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A parcel delivery service that commits to next day delivery across the country is 
relating the functional requirement of transporting a parcel from “A” to “B” to Real-
world time; that is, “one day.” For the organization to meet this non-functional 
requirement, it must analyze the system, identify the activities, and bound the time 
taken to perform them. It must also decide what resources (people, planes, etc.) are 
allocated to the problem. The use of those resources in performing particular activities 
must be coordinated so that one activity doesn’t prejudice the Real-World time 
requirement of another activity. If the arrival rate of parcels and the isolation of 
resources from the outside world are known, then the organization can (ignoring 
component failures) guarantee “next day” delivery. If the arrival pattern of parcels is 
variable and the peak rate would suggest a large amount of resources (which would at 
other times be largely idle), then the organization could fall back to statistical 
predictability: offering “next day delivery or your money back.”

Relating functional requirements to real-world time may take several forms. A 
response time requirement might say that the occurrence of event “A” shall cause an 
event “B” within 24 hours. A throughput requirement might say that the system shall 
cope with 1000 occurrences of an event per hour. A statistical requirement might say 
that 95% of the occurrences of event “A” shall cause an event “B” within 24 hours. All 
these forms of requirement are real-time requirements. A system that meets real-time 
requirements is a real-time system.

1.3.2 Meeting Real-time Requirements

Deterministic behavior of the components of a real-time system promotes the 
predictability of the overall system. In order to decide a priori if a real-time 
requirement is met, the system must behave predictably. This can only happen if all the 
parts of the system behave deterministically and if they “combine” predictably.

The interfaces and mechanisms provided by Real-time CORBA facilitate a predictable 
combination of the ORB and the application. The application manages the resources by 
using the Real-time CORBA interfaces and the ORB’s mechanisms coordinate the 
activities that comprise the application. The real-time ORB relies upon the RTOS to 
schedule threads that represent activities being processed and to provide mutexes to 
handle resource contention.

1.3.3 Distributable Thread

This specification provides an abstraction for distributed real-time programming as an 
end-to-end schedulable entity termed distributable thread. Such a distributed execution 
model is essential to support:

• the statically-scheduled Real-time CORBA Base Architecture described in this and 
the following chapter; and

• as a foundation for dynamically scheduled real-time CORBA systems described in 
the Dynamic Scheduling chapter below.
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Prior versions of this specification loosely described the term “activity.” This term was 
avoided to reduce conflict with prior usage in CORBA specifications such as 
Workflow Management (formal/00-05-02) and Additional Structuring Mechanisms for 
the OTS Specification (formal/02-09-03). 

This specification does not attempt to address more advanced issues such as fault 
tolerance, propagation of system information, and control along the path of a 
distributable thread, etc. These facilities may be provided in a subsequent revision of 
this specification.

For further details on the term distributable thread refer to Section 3.9, “Distributable 
Thread,” on page 3-11.

1.3.4 End-to-End Predictability

One goal of this specification is to provide a standard for CORBA ORB 
implementations that support end-to-end predictability. For the purposes of this 
specification, “end-to-end predictability” of timeliness in a fixed priority CORBA 
system is defined to mean:

• respecting thread priorities between client and server for resolving resource 
contention during the processing of CORBA invocations;

• bounding the duration of thread priority inversions during end-to-end processing;

• bounding the latencies of operation invocations.

A Real-time CORBA system will include the following four major components, each 
of which must be designed and implemented in such a way as to support end-to-end 
predictability, if end-to-end predictability is to be achieved in the system as a whole:

1. the scheduling mechanisms in the OS; 

2. the real-time ORB; 

3. the communication transport; 

4. the application(s).

Real-time ORBs conformant to this specification are still reliant on the characteristics 
of the underlying operating system and on the application if the overall system is to 
exhibit end-to-end predictability.

Note – An OS that implements the IEEE POSIX 1003.1-1996 Real-time Extensions 
has the necessary features to facilitate end-to-end predictability. It is still possible for 
an OS that doesn’t implement some or all of the POSIX Real-time Extensions 
specification to support end-to-end predictability. Real-time CORBA is not restricted 
to such OSs.
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1.3.5 Management of Resources

Providing end-to-end predictability will entail explicit choices in how much resources 
are deployed in a system. Certain requirements will lead to static partitioning of these 
resources among activities.

For real-time requirements of the statistical kind and for some throughput 
requirements, the level of resources needed to make the system “schedulable” can be 
prohibitive. Real-time CORBA systems can still provide assurances that requirements 
are met due to the explicit control provided over resources.

Resources come in three categories: process, storage, and communication resources. 
Real-time CORBA offers control over threadpools, which objects the threads within 
them are used for, and what priorities they might run at. Real-time CORBA also 
appends some storage resources to threadpools for the specific capability of handling a 
number of concurrent requests above the number of threads provided. Real-time 
CORBA provides control over transport connections: which are shared and which are 
allocated for what priority of activity.

1.4 Compatibility

1.4.1 Interoperability

Real-time CORBA does not prescribe an RT-IOP as an ESIOP. There are a number of 
pragmatic reasons for this. There are many specialized scenarios in which Real-time 
CORBA can be deployed. These different scenarios do not exhibit enough common 
characteristics to allow a common interaction protocol to be defined. Secondly, each 
scenario will impose a different transport protocol. Without agreeing on a common 
transport, interoperability isn’t possible.

Instead of specifying an RT-IOP, this specification uses the “standard extension” 
mechanisms provided by IIOP. These mechanisms are GIOP ServiceContexts, IOR 
Profiles, and IOR Tagged Components. Using these it is possible for IIOP to provide 
protocol support for the mechanisms prescribed in Real-time CORBA. 

The benefit is that two Real-time CORBA implementations will interoperate. 
Interoperability may not be as important for a Real-time CORBA system as for a 
CORBA system because real-time dictates a measure of system-wide design control to 
deliver predictability and therefore also some control over which ORB to deploy.

The second benefit is that the specified extensions define what features of a vendors 
own Real-time IOP can be mapped onto IIOP. This allows vendors to bridge between 
different Real-time CORBA implementations.
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1.4.2 Portability

Providing real-time applications with portability across real-time ORBs is a goal of 
this specification, providing a portability layer for real-time operating systems is not a 
goal. Basing such an RTOS wrapper on say, POSIX Real-time Extension would 
constrain the range of operating systems to which Real-time CORBA can add value.

Any real-time system will be carefully configured to meet its real-time requirements. 
This includes taking account of the behavior and timings of the ORB itself. Porting an 
application to a different Real-time ORB will necessitate that the application be 
reconfigured. Portability cannot be “write once run everywhere” for Real-time 
CORBA. What it does do is reduce the risk to a development of having to port.

1.4.3 CORBA - Real-time CORBA Interworking

In many systems Real-time CORBA components will have to interwork with CORBA 
components. The interfaces (in particular IIOP extensions) are specified so that this is 
functionally possible. Clearly, in any given system, there will be timing and 
predictability implications that need to be considered if the real-time component is not 
to be compromised.

CORBA applications can be ported to Real-time ORBs. They simply will not make use 
of the extra functions provided. Porting a real-time application to a non-real-time ORB 
will sacrifice the predictability of that application but the two platforms are 
functionally equivalent.

1.5 Real-time CORBA Architectural Overview

Real-time CORBA defines a set of extensions to CORBA. The extensions to the 
CORBA Core are specified in the Real-time CORBA Extensions chapter. The 
extensions to the Real-time Base Architecture required to support dynamically 
scheduled systems is specified in the Dynamic Scheduling chapter.

Figure 1-1 shows the key Real-time CORBA entities that are specified. The features 
that these relate to are described in overview in the following sections.
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Figure 1-1 Real-time CORBA Extensions

1.5.1 Real-time CORBA Modules

All CORBA IDL specified by Real-time CORBA is contained in new modules 
RTCORBA and RTPortableServer (with the exception of new service contexts, which 
are additions to the IOP module.)

1.5.2 Real-time ORB

Real-time CORBA defines an extension of the ORB interface, RTCORBA::RTORB, 
which handles operations concerned with the configuration of the real-time ORB and 
manages the creation and destruction of instances of other Real-time CORBA IDL 
interfaces.
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1.5.3 Thread Scheduling

Real-time CORBA uses threads as a schedulable entity. Generally, a thread represents 
a sequence of control flow within a single node. Threads for part of an activity. 
Activities are “scheduled” by coordination of the scheduling of their constituent 
threads. Real-time CORBA specifies interfaces through which the characteristics of a 
thread that are of interest can be manipulated. These interfaces are Threadpool creation 
and the Real-time CORBA Current interface. 

Note – The Real-time CORBA view of a thread is compatible with the POSIX 
definition of a thread.

1.5.4 Real-time CORBA Priority

Real-time CORBA defines a universal, platform independent priority scheme called 
Real-time CORBA Priority. It is introduced to overcome the heterogeneity of different 
Operating System provided priority schemes, and allows Real-time CORBA 
applications to make prioritized CORBA invocations in a consistent fashion between 
nodes with different priority schemes.

For consistency, Real-time CORBA applications always should use CORBA Priority to 
express the priorities in the system, even if all nodes in a system use the same native 
thread priority scheme, or when using the server declared priority model.

1.5.5 Native Priority and PriorityMappings

Real-time CORBA defines a NativePriority type to represent the priority scheme that 
is ‘native’ to a particular Operating System.

Priority values specified in terms of the Real-time CORBA Priority scheme must be 
mapped into the native priority scheme of a given scheduler before they can be applied 
to the underlying schedulable entities. On occasion, it is necessary for the reverse 
mapping to be performed, to obtain a Real-time CORBA Priority to represent the 
present native priority of a thread. The latter can occur, for example, when priority 
inheritance is in use, or when wishing to introduce an already running thread into a 
Real-time CORBA system at its present (native) priority.

To allow the Real-time ORB and applications to do both of these things, Real-time 
CORBA defines a PriorityMapping interface.

1.5.6 Real-time CORBA Current

Real-time CORBA defines a Real-time CORBA Current interface to provide access to 
the CORBA priority of a thread.
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1.5.7 Priority Models

One goal of Real-time CORBA is to bound and to minimize priority inversion in 
CORBA invocations. One mechanism that is employed to achieve this is propagation 
of the activity priority from the client to the server, with the requirement that the server 
side ORB make the up-call at this priority (subject to any priority inheritance protocols 
that are in use).

However, in some scenarios, it is sufficient to design the application system by setting 
the priority of servers, and having them handle all invocations at that priority. Hence, 
Real-time CORBA supports two models for the priority at which a server handles 
requests from clients:

• Client Propagated Priority Model: in which the server honors the priority of the 
invocation, set by the client. The invocation’s Real-time CORBA Priority is 
propagated to the server ORB and the server-side ORB maps this Real-time 
CORBA Priority into its own native priority scheme using its PriorityMapping.

Requests from non-Real-time CORBA ORBs; that is, ORBs that do not propagate a 
Real-time CORBA Priority with the invocation are handled at a priority specified 
by the server.

• Server Declared Priority Model: in which the server handles requests at a Real-time 
CORBA Priority assigned on the server side. This model is useful for setting a 
boundary where new activities are begun with a CORBA invocation.

1.5.8 Real-time CORBA Mutexes and Priority Inheritance

The Mutex interface provides the mechanism for coordinating contention for system 
resources. Real-time CORBA specifies an RTCORBA::Mutex locality constrained 
interface, so that applications can use the same mutex implementation as the ORB.

A conforming Real-time CORBA implementation must provide an implementation of 
Mutex that implements some form of priority inheritance protocol. This may include, 
but is not limited to, simple priority inheritance or a form of priority ceiling protocol. 
The mutexes that Real-time CORBA makes available to the application must have the 
same priority inheritance properties as those used by the ORB to protect resources. 
This allows a consistent priority inheritance scheme to be delivered across the whole 
system.

1.5.9 Threadpools

Real-time CORBA uses the Threadpool abstraction to manage threads of execution on 
the server-side of the ORB. Threadpool characteristics can only be set when the 
threadpool is created. Threadpools offer the following features: 

• preallocation of threads - This helps reduce priority inversion, by allowing the 
application programmer to ensure that there are enough thread resources to satisfy a 
certain number of concurrent invocations, and helps reduce latency and increase 
predictability, by avoiding the destruction and recreation of threads between 
invocations. 
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• partitioning of threads - Having multiple thread pools associated with different 
POAs allows one part of the system to be isolated from the thread usage of another, 
possibly lower priority, part of the application system. This can again be used to 
reduce priority inversion. 

• bounding of thread usage - A threadpool can be used to set a maximum limit on 
the number of threads that a POA or set of POAs may use. In systems where the 
total number of threads that may be used is constrained, this can be used in 
conjunction with threadpool partitioning to avoid priority inversion by thread 
starvation.

• buffering of additional requests beyond the number that can be dispatched 
concurrently by the assigned number of threads.

1.5.10 Priority Banded Connections

To reduce priority inversion due to use of a non-priority respecting transport protocol, 
RT CORBA provides the facility for a client to communicate with a server via multiple 
connections, with each connection handling invocations that are made at a different 
CORBA priority or range of CORBA priorities. The selection of the appropriate 
connection is transparent to the application, which uses a single object reference as 
normal. 

1.5.11 Non-Multiplexed Connections

Real-time CORBA allows a client to obtain a private transport connection to a server, 
which will not be multiplexed (shared) with other client-server object connections.

1.5.12 Invocation Timeouts

Real-time CORBA applications may set a timeout on an invocation in order to bound 
the time that the client application is blocked waiting for a reply. This can be used to 
improve the predictability of the system.

1.5.13 Client and Server Protocol Configuration

Real-time CORBA provides interfaces that enable the selection and configuration of 
protocols on the server and client side of the ORB.

1.5.14 Real-time CORBA Configuration

New Policy types are defined to configure the following server-side RT CORBA 
features: 

• server-side thread configuration (through Threadpools)

• priority model (propagated by client versus declared by server) 

• protocol selection
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• protocol configuration

Which of the CORBA policy application points (ORB, POA, Current) a given policy 
may be applied at is given along with the description of each policy.

Real-time CORBA defines a number of policies that may be applied on the client-side 
of CORBA applications. These policies allow:

• the creation of priority-banded sets of connections between clients and servers;

• the creation of a non-multiplexed connection to a server;

• client-side protocol selection and configuration.

In addition, Real-time CORBA uses an existing CORBA policy, to provide invocation 
timeouts.
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2.1 Real-time ORB

Real-time CORBA defines an extension to the CORBA::ORB interface, 
RTCORBA::RTORB. This interface is not derived from CORBA::ORB as the latter 
is expressed in pseudo IDL, for which inheritance is not defined. Nevertheless, 
RTORB is conceptually the extension of the ORB interface.

The RTORB interface provides operations to create and destroy other constituents of a 
Real-time ORB.

There is a single instance of RTCORBA::RTORB per instance of CORBA::ORB. 
The object reference for the RTORB is obtained by calling 
ORB::resolve_initial_references with the ObjectId “RTORB.” 

RTCORBA::RTORB is a local interface. The reference to the RTORB object may not 
be passed as a parameter of an IDL operation nor may it be stringified. Any attempt to 
do so shall result in a MARSHAL system exception (with a Standard Minor 
Exception Code of 4).

// IDL
module RTCORBA {

local interface RTORB {

...

};

};

2.1.1 Real-time ORB Initialization

Real-time ORB initialization occurs within the CORBA::ORB_init operation. That is 
a Real-time ORB’s implementation of CORBA::ORB_init shall perform any actions 
necessary to initialize the real-time capability of the ORB.

In order to give the developer some control over a Real-time ORB’s use of priorities 
the ORB_init operation shall be capable of handling an argv element of the form:

–ORBRTpriorityrange<optional-white-space><short>,<short>

Where <short> is a string encoding of an integer between 0 and 32767. The first 
integer should be smaller than the second. If the argv element string does not conform 
to these constraints, then a BAD_PARAM system exception shall be raised.

The two integers represent a range of CORBA Priorities available for use by ORB 
internal threads. Note that priority of Real-time CORBA application threads is 
controlled by other mechanisms. If the ORB cannot map these integers onto the native 
priority scheme, then it shall raise a DATA_CONVERSION system exception.
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If the ORB deems the range of priorities to be too narrow for it to function properly, 
then it shall raise an INITIALIZE system exception (with a Standard Minor Exception 
Code of 1). For example, an implementation may not be able to function with less 
than, say, three distinct priorities without risking deadlock.

2.1.2 Real-time CORBA System Exceptions

Real-time CORBA provides a more constraining environment for an application than 
the environment provided by CORBA. This is reflected in the additional circumstances 
in which system exceptions can be generated. These circumstances need to be 
differentiated from the use of the same exception in CORBA.

Real-time CORBA uses many of the Standard System Exceptions with the same 
meaning as applies in CORBA. These uses need no differentiation. Where the use of a 
CORBA Standard System Exception has a meaning particular to Real-time CORBA, 
Standard Minor Exception Codes are assigned.

2.2 Real-time POA

Real-time CORBA defines an extension to the POA, in the form of the interface 
RTPortableServer::POA.

// IDL
module RTPortableServer {

local interface POA : PortableServer::POA {

...

};

};

Conformance to the Real-time CORBA Extensions also necessarily implies 
conformance to CORBA. In particular, a Real-time ORB will handle interfaces of type 
PortableServer::POA in accordance with the CORBA specification. For a Real-time 
ORB all such instances shall be of the subtype RTPortableServer::POA. That is it 

Table 2-1 Standard Minor Exception Codes used for Real-time CORBA

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

MARSHAL 4 Attempt to marshal local object.

DATA_CONVERSION 2 Failure of PriorityMapping object.

INITIALIZE 1 Priority range too restricted for ORB.

BAD_INV_ORDER 18 Attempt to reassign priority.

NO_RESOURCES 2 No connection for request’s priority.
January 2005 Real-time CORBA:  Real-time POA 2-3



2

shall always be possible to treat an instance of PortableServer::POA as an instance 
of RTPortableServer::POA; for example, successfully narrow in some language 
mappings.

A call to ORB::resolve_initial_references(“RootPOA”) shall return an interface 
of type RTPortableServer::POA. A Real-time POA will differ from a POA in two 
ways. Firstly, it shall provide additional operations to support object level priority 
settings (see Section 2.7.5, “Setting Server Priority on a per-Object Reference Basis,” 
on page 2-13). Secondly, its implementation shall understand the Real-time Policies 
defined in this Extension. As the Real-time POA interface is derived from the POA 
interface, it shall support all the semantics prescribed for the POA.

2.3 Native Thread Priorities

A real-time operating system (RTOS) sufficient to use for implementing a Real-time 
ORB compliant with this specification, will have some discrete representation of a 
thread priority. This representation typically specifies a range of values and a direction 
for which values, higher or lower, represent the higher priority. The particular range 
and direction in this priority representation varies from RTOS to RTOS. This 
specification refers to the RTOS specific thread priority representation as a native 
thread priority scheme. The priority values of this scheme are referred to as native 
thread priorities.

Native thread priorities are used to designate the execution eligibility of threads. The 
ordering of native thread priorities is such that a thread with higher native priority is 
executed at the exclusion of any threads in the system with lower native priorities.

A native thread priority is an integer value that is the basis for resolving competing 
demands of threads for resources. Whenever threads compete for processors or ORB 
implementation-defined resources, the resources are allocated to the thread with the 
highest native thread priority value.

The base native thread priority of a thread is defined as the native priority with which 
it was created, or to which it was later set explicitly. The initial value of a thread’s base 
native priority is dependent on the semantics of the specific operating environment. 
Hence it is implementation specific.

At all times, a thread also has an active native thread priority, which is the result of 
considering its base native thread priority together with any priorities it inherits from 
other sources; for example, threads or mutexes. An active native thread priority is set 
implicitly as a result of some other action. Its value is only temporary, at some point it 
will return to the base native thread priority.

Priority inheritance is the term used for the process by which the native thread priority 
of other threads is used in the evaluation of a thread’s active native thread priority. A 
priority inheritance protocol must be used by a conforming Real-time CORBA ORB to 
implement the execution semantics of threads and mutexes. It is an implementation 
issue as to whether the Real-time ORB implements simple priority inheritance, 
immediate ceiling locking protocol, original ceiling locking protocol, or some other 
priority inheritance protocol.
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Whichever priority inheritance protocol is used, the native thread priority ceases to be 
inherited as soon as the condition calling for the inheritance no longer exists. At the 
point when a thread stops inheriting a native thread priority from another source, its 
active native thread priority is re-evaluated.

The thread’s active native priority is used when the thread competes for processors. 
Similarly, the thread’s active native priority is used to determine the thread’s position 
in any queue; that is, dequeuing occurs in native thread priority order. 

Native priorities have an IDL representation in Real-time CORBA, which is of type 
short:

// IDL
module RTCORBA {

typedef short NativePriority;

};

This means that native priorities must be integer values in the range -32768 to +32767. 
However, for a particular RTOS, the valid range will be a sub-range of this range.

Real-time CORBA does not support the direct use of native priorities: instead, the 
application programmer uses CORBA Priorities, which are defined in the next section. 
However, applications will still use native priorities where they make direct use of 
RTOS features.

2.4 CORBA Priority

To overcome the heterogeneity of RTOSs, that is different RTOSs having different 
native thread priority schemes, Real-time CORBA defines a CORBA Priority that has 
a uniform representation system-wide. CORBA Priority is represented by the 
RTCORBA::Priority type:

//IDL
module RTCORBA {

    typedef short Priority;
    const Priority minPriority =     0;
    const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language mapping. However, 
only values in the range 0 (minPriority) to 32767 (maxPriority) are valid. Numerically 
higher RTCORBA::Priority values are defined to be of higher priority.

For each RTOS in a system, CORBA priority is mapped to the native thread priority 
scheme. CORBA priority thus provides a common representation of priority across 
different RTOSs.
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2.5 CORBA Priority Mappings

Real-time CORBA defines the concept of a PriorityMapping between CORBA 
priorities and native priorities. The concept is defined as an IDL native type so that the 
mechanism by which priorities are mapped is exposed to the user. Native is chosen 
rather than interface (even if locality constrained) because the full capability of the 
ORB; for example, POA policies and CORBA exceptions are too heavyweight for this 
use. Furthermore, a CORBA interface would entail the creation and registration of an 
object reference.

// IDL 
module RTCORBA {

native PriorityMapping;

};

Language mapping for this IDL native are defined for C, C++, Ada, and Java later in 
this section.

A Real-time ORB shall provide a default mapping for each platform; that is, RTOS 
that the ORB supports. Furthermore, a Real-time ORB shall provide a mechanism to 
allow users to override the default priority mapping with a priority mapping of their 
own.

The PriorityMapping is a programming language object rather than a CORBA Object 
and therefore the normal mechanism for coupling an implementation to the code that 
uses it (an object reference) doesn’t apply. This specification does not prescribe a 
particular mechanism to achieve this coupling. 

Note – Possible solutions include: recourse to build/link tools and provision of 
proprietary interfaces. Other solutions are not precluded.

2.5.1 C Language binding for PriorityMapping 

/* C */
CORBA_boolean RTCORBA_PriorityMapping_to_native ( 

RTCORBA_Priority            corba_priority,
RTCORBA_NativePriority* native_priority );

CORBA_boolean RTCORBA_PriorityMapping_to_CORBA ( 
RTCORBA_NativePriority native_priority,
RTCORBA_Priority*         corba_priority );
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2.5.2 C++ Language binding for PriorityMapping 

// C++
namespace RTCORBA {

class PriorityMapping {
public:

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority, 
RTCORBA::NativePriority &native_priority );

virtual CORBA::Boolean to_CORBA ( 
RTCORBA::NativePriority native_priority, 
RTCORBA::Priority &corba_priority );

};
};

2.5.3 Ada Language binding for PriorityMapping 

-- Ada 
package RTCORBA.PriorityMapping is

type Object is tagged private;

procedure To_Native (
Self : in Object ;
CORBA_Priority : in RTCORBA.Priority ; 
Native_Priority: out RTCORBA.NativePriority ; 
Returns : out CORBA.Boolean ) ;

procedure To_CORBA (
Self : in Object ;
Native_Priority: in RTCORBA.NativePriority ;
CORBA_Priority : out RTCORBA.Priority ;
Returns : out CORBA.Boolean ) ; 

end RTCORBA.PriorityMapping ; 
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2.5.4 Java Language binding for PriorityMapping 

// Java
package org.omg.RTCORBA;

public class PriorityMapping {

boolean to_native (
short corba_priority,
org.omg.CORBA.ShortHolder native_priority

);
boolean to_CORBA (

short native_priority,
org.omg.CORBA.ShortHolder corba_priority

);
}

2.5.5 Semantics

The priority mappings between native priority and CORBA priority are defined by the 
implementations of the to_native and to_CORBA operations of a PriorityMapping 
object (note, not a CORBA Object). The to_native operation accepts a CORBA 
Priority value as an in parameter and maps it to a native priority, which is given back 
as an out parameter. Conversely, to_CORBA accepts a NativePriority value as an in 
parameter and maps it to a CORBA Priority value, which is again given back as an out 
parameter.

As the mappings are used by the ORB, and may be used more than once in the normal 
execution of an invocation, their implementations should be as efficient as possible. 
For this reason, the mapping operations may not raise any CORBA exceptions, 
including system exceptions. The ORB is not restricted from making calls to the 
to_native and/or to_CORBA operations from multiple threads simultaneously. Thus, 
the implementations should be re-entrant. 

Rather than raising a CORBA exception upon failure, a boolean return value is used to 
indicate mapping failure or success. If the priority passed in can be mapped to a 
priority in the target priority scheme, TRUE is returned and the value is returned as the 
out parameter. If it cannot be mapped, FALSE is returned and the value of the out 
parameter is undefined. 

Both to_native and to_CORBA must return FALSE when passed a priority that is 
outside of the valid priority range of the input priority scheme. For to_native this 
means when it is passed a short value outside of the CORBA Priority range, 0-32767; 
that is, a negative value. For to_CORBA this means when it is passed a short value 
outside of the native priority range used on that RTOS. This range will be platform 
specific.
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Neither to_native nor to_CORBA is obliged to map all valid values of the input 
priority scheme (the CORBA Priority scheme or the native priority scheme, 
respectively.) This allows mappings to be produced that do not use all values of the 
native priority scheme of a particular scheduler and/or that do not use all values of the 
CORBA Priority scheme.

When the ORB receives a FALSE return value from a mapping operation that is called 
as part of the processing of a CORBA invocation, processing of the invocation 
proceeds no further. A DATA_CONVERSION system exception (with a Standard 
Minor Exception Code of 2) is raised to the application making the invocation. Note 
that it may not be possible to raise an exception to the application if the failure occurs 
on a call to a mapping operation made on the server side of a oneway invocation.

A Real-time ORB cannot assume that the priority mapping is idempotent. Users should 
be aware that a mapping that produces different results for the same inputs will make 
the goal of a schedulable system harder to obtain. Users may choose to implement a 
priority mapping that changes (through other, user specified interfaces). Users should 
however note that post-initialization changes to the mapping may well compromise the 
ORB’s ability to deliver a consistently schedulable system.

2.6 Real-time Current

The RTCORBA::Current interface, derived from CORBA::Current, provides access 
to the CORBA Priority (and hence indirectly to the native priority also) of the current 
thread. The application can obtain an instance of Current by invoking the 
CORBA::ORB::resolve_initial_references(“RTCurrent”) operation.

A Real-time CORBA Priority may be associated with the current thread, by setting the 
priority attribute of the RTCORBA::Current object:

//IDL
module RTCORBA {

local interface Current : CORBA::Current {
attribute Priority base_priority;

};

};

A BAD_PARAM system exception shall be thrown if an attempt is made to set the 
priority to a value outside the range 0 to 32767.

When the attribute is set to a valid Real-time CORBA Priority value, the value is 
immediately used to set the base native priority of the thread. The native priority value 
to use is determined by calling PriorityMapping::to_native on the installed 
PriorityMapping. The native thread priority shall be set before the set attribute call 
returns.
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If the to_native call returns FALSE or if the returned native thread priority is illegal 
for the particular underlying RTOS, then a Real-time ORB shall raise a 
DATA_CONVERSION system exception (with a Standard Minor Exception Code 
of 2). In this case the priority attribute shall retain its value prior to the set attribute 
call.

Once a thread has a CORBA Priority value associated with it, the behavior when it 
makes an invocation upon a CORBA Object depends on the value of the 
PriorityModelPolicy of that target object.

Retrieving the value of this attribute returns the last value that was set from the current 
thread. If this attribute has not previously been set for the current thread, attempting to 
retrieve the value causes an INITIALIZE System Exception to be raised.

2.7 Real-time CORBA Priority Models

Real-time CORBA supports two models for the coordination of priorities across a 
system. These two models provide two, alternate answers to the question: Where does 
the priority at which the servant code executes come from? They are:

• Client Propagated Priority Model

• Server Declared Priority Model

These two models are described in Section 2.7.3, “Client Propagated Priority Model,” 
on page 2-12 and Section 2.7.4, “Server Declared Priority Model,” on page 2-13, 
respectively. The model to be used is selected by the PriorityModelPolicy described 
first.

2.7.1 PriorityModelPolicy

The Priority Model is selected and configured by use of the PriorityModelPolicy:

//IDL
module RTCORBA {

// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED, 
SERVER_DECLARED

};

local interface PriorityModelPolicy : CORBA::Policy {
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readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

};

When the Server Declared Model is selected for a given POA, the server_priority 
attribute indicates the priority that will be assigned by default to CORBA Objects 
managed by that POA. This priority can be overridden on a per-Object Reference 
basis, as described in a sub-section below.

When the Client Propagated Model is selected, the server_priority attribute indicates 
the priority to be used for invocations from non-Real-time CORBA ORBs; that is, 
where there is no RTCorbaPriority ServiceContext on the request.

2.7.2 Scope of PriorityModelPolicy

The PriorityModelPolicy is applied to a Real-time POA at the time of POA creation. 
This is either through an ORB level default having previously been set or by including 
it in the policies parameter to create_POA. An instance of the PriorityModelPolicy 
is created with the create_priority_model_policy operation. The attributes of the 
policy are initialized with the parameters of the same name.

//IDL
module RTCORBA {

local interface RTORB {
...
PriorityModelPolicy create_priority_model_policy (

in PriorityModel priority_model,
in Priority server_priority

);
};

};

The PriorityModelPolicy is a client-exposed policy; that is, propagated from the 
server to the client in IORs. It is propagated in a PolicyValue in a TAG_POLICIES 
Profile Component, as specified by the CORBA QoS Policy Framework.

When an instance of PriorityModelPolicy is propagated, the PolicyValue’s ptype 
has the value PRIORITY_MODEL_POLICY_TYPE and the pvalue is a CDR 
encapsulation containing an RTCORBA::PriorityModel and an 
RTCORBA::Priority. 

Note – Client-exposed policies and the mechanism for their propagation are defined in 
the CORBA Messaging specification (see the Common Object Request Broker 
Architecture (CORBA) specification, Messaging chapter).
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The PriorityModelPolicy is propagated so that the client ORB knows which Priority 
Model the target object is using. This allows it to determine whether to send the Real-
time CORBA priority with invocations on that object, and, in the case that the Server 
Declared model is used in combination with Priority Banded Connections, allows it to 
select the band connection to invoke over based on the declared priority in the tagged 
component.

The client may not override the PriorityModelPolicy.

2.7.3 Client Propagated Priority Model

If the target object supports the CLIENT_PROPAGATED value of the 
PriorityModelPolicy, the CORBA Priority is carried with the CORBA invocation 
and is used to ensure that all threads subsequently executing on behalf of the 
invocation run at the appropriate priority. The propagated CORBA Priority becomes 
the CORBA Priority of any such threads. These threads run at a native priority mapped 
from that CORBA Priority. The CORBA Priority is also passed back from server to 
client, so that it can be used to control the processing of the reply by the client ORB.

The CORBA Priority is propagated from client to server, and back again, in a CORBA 
Priority service context, which is passed in the invocation request and reply messages.

module IOP {

        const ServiceId         RTCorbaPriority = 10;

};

The context_data contains the RTCORBA::Priority value as a CDR encapsulation 
of an IDL short type.

Note – The RTCorbaPriority const should be added to a future version of GIOP.

The thread that runs the servant code, initially has the CORBA Priority of the invoking 
thread. Therefore if, as part of the processing of this request it makes CORBA 
invocations to other objects, these onward invocations will be made with the same 
CORBA Priority. If the CORBA Priority of the thread running the servant code is 
changed by the application, any subsequent onward invocations will be made with this 
new priority. 

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS) 
whilst the servant code is executing due to priority inheritance.
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2.7.4 Server Declared Priority Model 

An object using the Server Declared Priority Model will have published its CORBA 
Priority in its object reference. When such an object is the target of an invocation the 
CORBA Priority at which the (remote) servant code will execute is available to the 
client-side ORB. The client-side ORB may use this knowledge internally. For example, 
in conjunction with priority banded connections. 

Note – Client-side ORB execution to support an invocation should run at the priority 
of the client making the invocation. The extent to which this is achieved is a matter for 
implementation.

The client’s Real-time CORBA Priority value is not passed with the invocation, in a 
service context, as it is in the Client Priority Propagation Model. A Real-time CORBA 
Priority is not passed in a reply message either.

Server-side threads running on behalf of the invocation run at a native priority mapped 
from the Real-time CORBA Priority associated with that CORBA Object, which is 
given in the server_priority attribute of the PriorityModelPolicy used at its 
creation.

Where an object, S1, using the Server Declared Priority Model makes invocations of 
its own upon another target object, S2, that uses the Client Propagated Priority Model, 
the priority propagated will be that of S1 and not that of S1’s client. If the CORBA 
Priority of the thread executing S1’s code is changed by the application, any 
subsequent onward invocations will be made with this new priority. 

Note that priorities may be changed implicitly by the platform (RT ORB + RTOS) 
while the servant code is executing due to priority inheritance.

2.7.5 Setting Server Priority on a per-Object Reference Basis

The server priority assigned under the Server Declared Priority Model, by the 
server_priority attribute of the PriorityModelPolicy, can be overridden on a per-
Object Reference basis. This is achieved by assigning the alternate server priority at 
the time of Object Reference creation or servant activation, using one of four 
additional operations, which are provided by the Real-time CORBA POA, 
RTPortableServer::POA. Thereafter, the ORB shall ensure that the servant code is 
run at a native thread priority corresponding to the CORBA priority supplied as input 
to these operations. 

// IDL
module RTPortableServer {

local interface POA : PortableServer::POA {
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Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

PortableServer::ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, WrongPolicy );

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, 
ObjectAlreadyActive, WrongPolicy );

};

};

If the priority parameter of any of the above operations is not a valid CORBA priority 
or if it fails to match the priority configuration for resources assigned to the POA, then 
the ORB shall raise a BAD_PARAM system exception.

For each of the above operations, if the POA does not support the 
SERVER_DECLARED option for the PriorityModelPolicy, then the ORB shall 
raise a WrongPolicy user exception.

For each of the above operations, if the POA supports the IMPLICIT_ACTIVATION 
option for the ImplicitActivationPolicy, then the ORB shall raise a WrongPolicy 
user exception. This relieves an ORB implementation of the need to retrieve the target 
object’s priority from “somewhere” when a request arrives for an inactive object.

If the activate_object_with_id_and_priority operation is invoked with a different 
priority to an earlier invocation of one of the create reference with priority operations, 
for the same object, then the ORB shall raise a BAD_INV_ORDER system 
exception (with a Standard Minor Exception Code of 18). If the priority value is the 
same, then the operation will be successful.

In all other respects the semantics of the corresponding; that is, without the name 
extensions “_with_priority” and “_and_priority” PortableServer::POA 
operations shall be observed.
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2.8 Priority Transforms

Real-time CORBA supports the installation of user-defined Priority Transforms, to 
modify the CORBA Priority associated with an invocation during the processing of the 
invocation by a server. Use of these Priority Transforms allows application designers 
to implement Real-time CORBA systems using priority models different from either 
the Client Propagated or Server Declared priority models, described above.

There are two points at which a Priority Transform may affect the CORBA Priority 
associated with an invocation:

• During the invocation up call (after the invocation has been received at the server 
but before the servant code is invoked). This is referred to as an ‘inbound’ Priority 
Transform, and will occur before the first time the server-side ORB uses the 
RTCORBA::Priority value to obtain a native priority value, via a to_native 
operation on the Priority Mapping.

• At the time of making an ‘onward’ CORBA invocation, from servant application 
code. This is referred to as an ‘outbound’ Priority Transform.

Priority Transforms are user-provided functions that map one RTCORBA::Priority 
value to another RTCORBA::Priority value. In addition to the input priority value, 
the ObjectId of the target object is made available to the inbound transform while the 
ObjectId of the invoking object is made available to the outbound transform. For 
invocations not made from another CORBA Object; that is, made from an application 
thread, the outbound transform is still called, with a null value for the ObjectId 
parameter. The transform implementor has the option of leaving the priority 
unmodified in this case.

A pair of priority transforms, one at each of these two points, may be required to 
implement a particular priority protocol. For example, to implement a particular 
variety of distributed priority ceiling protocol, the inbound transform could add a 
constant offset to the CORBA Priority, and the outbound transform could subtract the 
same offset from the CORBA Priority, so that the onward invocation is made with the 
original CORBA Priority.

Priority Transforms are presented to the Real-time ORB as the implementation of the 
transform_priority operation for an instance of the locality constrained CORBA 
interface type RTCORBA::PriorityTransform:

// IDL 
module RTCORBA {

native PriorityTransform;

};

Language mappings for this IDL native are defined for C, C++, Ada, and Java later in 
this section.
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The PriorityTransform is a programming language object rather than a CORBA 
Object and therefore the normal mechanism for coupling an implementation to the 
code that uses it (an object reference) doesn’t apply. This specification does not 
prescribe a particular mechanism to achieve this coupling. A Real-time ORB shall 
provide a mechanism to allow users to install a priority transform.

Note – Possible solutions include: recourse to build/link tools and provision of 
proprietary interfaces. Other solutions are not precluded.

2.8.1 C Language Binding for PriorityTransform 

The use of the the_priority parameter is that of an IDL inout parameter.

/* C */
CORBA_boolean RTCORBA_PriorityTransform_inbound ( 

RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid );

CORBA_boolean RTCORBA_PriorityTransform_outbound ( 
RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid );

2.8.2 C++ Language Binding for PriorityTransform 

The use of the the_priority parameter is that of an IDL inout parameter.

// C++
namespace RTCORBA {

class PriorityTransform {
public:

virtual CORBA::Boolean inbound (
RTCORBA::Priority &the_priority, 
PortableServer::ObjectId oid );

virtual CORBA::Boolean outbound ( 
RTCORBA::Priority &the_priority, 
PortableServer::ObjectId oid );

};
};
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2.8.3 Ada Language binding for PriorityTransform 

-- Ada 
package RTCORBA.PriorityTransform is

type Object is tagged private;

procedure Inbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ; 
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean ) ;

procedure Outbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean ) ; 

end RTCORBA.PriorityTransform ; 

2.8.4 Java Language binding for PriorityTransform 

The use of the the_priority parameter is that of an IDL inout parameter.

// Java
package org.omg.RTCORBA;

public class PriorityTransform {

boolean inbound (
org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
boolean outbound (

org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
}

2.8.5 Semantics

Rather than raising a CORBA exception upon failure, a boolean return value is used to 
indicate Transform failure or success. If the priority passed in can be transformed, 
TRUE is returned and the value is returned as the out parameter. If it cannot be 
transformed, FALSE is returned and the value of the out parameter is undefined. 
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Both the inbound and outbound functions must return FALSE when passed a priority 
that is outside of the valid priority range for a CORBA Priority, 0-32767; that is, a 
negative value. If the transform doesn’t recognize the ObjectId, then it should return 
FALSE.

Neither inbound nor outbound is obliged to transform all valid CORBA priority values. 
However, users should note that failure to do so will result in invocation at that priority 
failing. 

When the ORB receives a FALSE return value from a Transform operation that is 
called as part of the processing of a CORBA invocation, processing of the invocation 
proceeds no further. An ORB that receives a FALSE return from a transform function 
shall, if possible, raise an UNKNOWN system exception on the application 
invocation. Note that it may not be possible to raise an exception to the application if 
the failure occurs on a call to a Transform operation made on the server side of a 
oneway invocation.

A Real-time ORB cannot assume that the priority Transform is idempotent. Users 
should be aware that a Transform that produces different results for the same inputs 
will make the goal of a schedulable system harder to obtain. Users may choose to 
implement a priority Transform that changes (through other, user specified interfaces). 
Users should however note that post-initialization changes to the Transform may well 
compromise the ORB’s ability to deliver a consistently schedulable system.

Note that Priority Transforms may be used with either the Client Propagated or the 
Server Declared Priority Models. If the Client Propagated model is used, the input 
priority to the inbound transform shall be the RTCORBA::Priority propagated from 
the client. If the Server Declared model is used, the input priority to the inbound 
transform will be the RTCORBA::Priority assigned to the target object. For the 
outbound transform, the input priority shall be the derived CORBA Priority.

2.9 Mutex Interface 

Real-time CORBA defines the following Mutex interface:

//IDL 
module RTCORBA {

local interface Mutex     {

void lock( );
void unlock( );
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

local interface RTORB {
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...
Mutex create_mutex();
void destroy_mutex( in Mutex the_mutex );
...

};
};

A new RTCORBA::Mutex object is obtained using the create_mutex() operation of 
RTCORBA::RTORB. 

A Mutex object has two states: locked and unlocked. Mutex objects are created in the 
unlocked state. When the Mutex object is in the unlocked state the first thread to call 
the lock() operation will cause the Mutex object to change to the locked state. 
Subsequent threads that call the lock() operation while the Mutex object is still in the 
locked state will block until the owner thread unlocks it by calling the unlock() 
operation. 

Note – If a Real-time ORB is to run on a shared memory multi-processor, then the 
Mutex implementation must ensure that the lock operations are atomic to all 
processors.

The try_lock() operation works like the lock() operation except that if it does not get 
the lock within max_wait time it returns FALSE. If the try_lock() operation does get 
the lock within the max_wait time period, it returns TRUE.

The mutex returned by create_mutex must have the same priority inheritance 
properties as those used by the ORB to protect resources. If a Real-time CORBA 
implementation offers a choice of priority inheritance protocols, or offers a protocol 
that requires configuration, the selection or configuration will be controlled through an 
implementation specific interface.

While a thread executes in a region protected by a mutex object, it can be preempted 
only by threads whose active native thread priorities are higher than either the ceiling 
or inherited priority of the mutex object.

Note – The protocol implemented by the Mutex (which priority inheritance or priority 
ceiling protocol) is not prescribed. Real-time CORBA is intended for a wide range of 
RTOSs and the choice of protocol will often be predicated on what the RTOS does.

2.10 Threadpools

Real-time CORBA Threadpools are managed using the following IDL types and 
operations of the Real-time CORBA RTORB interface:
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//IDL 
module RTCORBA {

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority              lane_priority;
unsigned long  static_threads;
unsigned long  dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

local interface ThreadpoolPolicy : CORBA::Policy     {
readonly attribute ThreadpoolId threadpool;

};

local interface RTORB {
...
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

void destroy_threadpool ( in ThreadpoolId threadpool )
raises (InvalidThreadpool);

};
};
2-20 Real-time CORBA, v1.2 January 2005



2

The create_threadpool and create_threadpool_with_lanes operations allow two 
different styles of threadpool to be created: with or without ‘lanes,’ or division into 
sub-sets of threads at assigned different RTCORBA::Priority values. The two styles 
require some different parameters to be configured, as described in the two following 
sub-sections.

The configuration of stacksize and request buffering is common to both styles. The 
stacksize parameter is used to specify the stack size, in bytes, that each thread must 
have allocated. The configuration of request buffering is described in a sub-section 
below.

When a threadpool is successfully created, using either operation, a ThreadpoolId 
identifier is returned. This can later be passed to destroy_threadpool to destroy the 
threadpool. If a threadpool cannot be created because the parameters passed in do not 
specify a valid threadpool configuration, a BAD_PARAM system exception is raised. 
If a threadpool cannot be created because there are insufficient operating system 
resources, a NO_RESOURCES system exception is raised.

An instance of the ThreadpoolPolicy is created with the 
create_threadpool_policy operation. The attribute of the policy is initialized with 
the parameter of the same name.

The same threadpool may be associated with a number of different POAs, by using a 
ThreadpoolPolicy containing the same ThreadpoolId in each POA_create.

2.10.1 Creation of Threadpool without Lanes

To create a threadpool without lanes the following parameters must be configured:

• static_threads - specifies the number of threads that will be pre-created and 
assigned to that threadpool at the time of its creation. A NO_RESOURCES 
exception is raised if this number of threads cannot be created, in which case no 
threads are created and no threadpool is created. 

• dynamic_threads - specifies the number of additional threads that may be created 
dynamically (individually and upon demand) when the static threads are all in use 
and an additional thread is required to service an invocation. Whether a dynamically 
created thread is destroyed as soon as it is not in use, or is retained forever or until 
some condition is met is an implementation issue.

If dynamic_threads is zero, no additional threads may be dynamically created, 
and only the static threads are available. In either case, once the maximum number 
of threads (static plus any dynamic) has been reached, no additional threads will be 
added to the threadpool. Any additional invocations will wait for one of the existing 
threads to become available.

• default_priority - specifies the CORBA priority that the static threads will be 
created with. (Dynamic threads may be created directly at the priority they are 
required to run at to handle the invocation they were created for.)
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2.10.2 Creation of Threadpool with Lanes

To create a threadpool with lanes, a lanes parameter must be configured, instead of the 
static_threads, dynamic_threads, and default_priority parameters. The lanes 
specify a number of ThreadpoolLanes, each of which must have the following 
parameters specified:

• lane_priority - specifies the CORBA Priority that all threads in this lane (both 
static, and dynamically allocated ones) will run at.

• static_threads - specifies the number of threads that will be pre-created, but in 
this case allocated to this specific lane, rather than the pool as a whole.

• dynamic_threads - specifies the number of dynamic threads that may be 
allocated to this lane. The relationship between static and dynamic threads is the 
same as in the case of threadpools without lanes: it determines whether and if so 
how many additional threads may be dynamically created. But in this case the 
dynamic threads are specific to this lane and are created with the CORBA Priority 
specified by lane_priority.

Additionally, to create a threadpool with lanes, the allow_borrowing boolean 
parameter must be configured to indicate whether the borrowing of threads by one lane 
from a lower priority lane is permitted or not.

If thread borrowing is permitted, when a lane of a given priority exhausts its maximum 
number of threads (both static and dynamic) and requires an additional thread to 
service an additional invocation, it may “borrow” a thread from a lane with a lower 
priority. The borrowed thread has its CORBA Priority raised to that of the lane that 
requires it. When the thread is no longer required, its priority is lowered once again to 
its previous value, and it is returned to the lower priority lane. The thread will be 
borrowed from the highest priority lane with threads available. If no lower priority 
lanes have threads available, the lane wishing to borrow a thread must wait until one 
becomes free (which may be one of its own.)

More generally, for both threadpools with and without lanes, if the priority of a thread 
is changed while dispatching an invocation, it is restored to its original priority before 
returning it to the threadpool.

2.10.3 Request Buffering

A Threadpool can be configured to buffer requests. That is when all of the available 
thread concurrency (static plus dynamic threads) is in use and when any capability to 
borrow threads has been exhausted then additional requests received are buffered.

If request buffering by the Threadpool is not required, the boolean parameter 
allow_request_buffering is set to FALSE, and the values of the 
max_buffered_requests and max_request_buffer_size parameters are 
disregarded. If request buffering is required, allow_request_buffering is set to 
TRUE, and the max_buffered_requests and max_request_buffer_size 
parameters are used as follows:
2-22 Real-time CORBA, v1.2 January 2005



2

max_buffered_requests indicates the maximum number of requests that will be 
buffered by this Threadpool. max_request_buffer_size indicates the maximum 
amount of memory, in bytes, that the buffered requests may use. Both properties of a 
Threadpool are evaluated to determine the number of requests that will be buffered. An 
incoming request is not buffered by the Threadpool if either the number of buffered 
requests reaches max_buffered_requests or buffering the request would take the 
total amount of buffer memory used past max_request_buffer_size.

Either parameter may be set to zero, to indicate that that property is to be taken as 
unbounded. Hence, just the number of requests or just the maximum amount of buffer 
memory can be used to limit the buffering.

If, at the time of Threadpool creation, the ORB can determine that it does not have the 
resources to support the requested configuration, the Threadpool creation operation 
will fail with a NO_RESOURCES system exception.

2.10.4 Scope of ThreadpoolPolicy

The ThreadpoolPolicy may be applied at the POA and ORB level. A POA may only 
be associated with one threadpool, hence only one ThreadpoolPolicy should be 
included in the PolicyList specified at POA creation. 

A ThreadpoolPolicy may be applied at the ORB level, by using the  
set_policy_overrides operation of the CORBA PolicyManager interface. When 
the policy is applied at the ORB level, it assigns the indicated threadpool as the default 
threadpool to use in the subsequent creation of POAs, until the default is again 
changed. The default is used if a ThreadpoolPolicy is not specified in the policies 
used at the time of POA creation. 

2.11 Implicit and Explicit Binding

Real-time CORBA makes use of the CORBA::Object::validate_connection 
operation to allow client applications to control when a binding is made on an object 
reference. 

Note – validate_connection and the definition of binding that it uses are defined in 
the Common Object Request Broker Architecture (CORBA) specification, CORBA 
Messaging chapter.

Using validate_connection on a currently unbound object reference causes binding 
to occur. Real-time CORBA refers to the use of validate_connection to force a 
binding to be made as ‘explicit binding.’ If an object reference is not explicitly bound, 
binding will occur at an ORB specific time, which may be as late as the time of the 
first invocation upon that object reference. This is referred to as ‘implicit binding,’ and 
is the default CORBA behavior unless an explicit bind is performed.

Real-time applications may wish to use explicit binding to force any binding related 
overhead (including the passing of messages between the client and server) to be 
incurred ahead of the first invocation on an object reference. This can improve the 
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performance and predictability of the first invocation, and hence the predictability of 
the application as a whole. The explicit bind may, for example, be performed during 
system initialization.

Once an explicit binding has been set up, via validate_connection, it is possible that 
the underlying transport connection (or other associated resources) may fail or may be 
reclaimed by the ORB. Rather than mandate that this shall not happen, it is left as a 
Quality of Implementation issue as to what guarantees of enduring availability an 
explicit binding provides.

The client-side applicable Real-time CORBA policies are applied to a binding in the 
same way as any other client-side applicable CORBA policies: using the 
set_policy_overrides operations at the ORB, Current, or Object scope (as defined in 
the CORBA QoS Policy Framework.)

The client-side applicable Real-time CORBA policies have the same effect whether 
they are applied to an implicit or explicit bind.

2.12 Priority Banded Connections

Priority banded connections are administered through the use of the Real-time CORBA 
PriorityBandedConnectionsPolicy Policy type:

// IDL 
module RTCORBA {

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {

readonly attribute PriorityBands priority_bands;

};
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local interface RTORB {
...
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
};

};

An instance of the PriorityBandedConnectionPolicy is created with the 
create_priority_banded_connection_policy operation. The attribute of the policy 
is initialized with the parameter of the same name.

The PriorityBands attribute of the policy may be assigned any number of 
PriorityBands. PriorityBands that cover a single priority (by having the same 
priority for their low and high values) may be mixed with those covering ranges of 
priorities. No priority may be covered more than once. The complete set of priorities 
covered by the bands do not have to form one contiguous range, nor do they have to 
cover all CORBA Priorities. If no bands are provided, then a single connection will be 
established. 

Once the binding has been successfully made, an attempt to make an invocation with a 
Real-time CORBA Priority, which is not covered by one of the bands will fail. The 
ORB shall raise a NO_RESOURCES system exception (with a Standard Minor 
Exception Code of 2). Hence, a policy specifying only one band can be used to restrict 
a client’s invocations to a range of priorities.

Note that the origin of the Real-time CORBA Priority value that is used to select 
which banded connection to use depends on the Priority Model of the target object. 
When invoking on an Object that is using the Client Propagated Priority Model, the 
client-set Real-time CORBA Priority is used to choose the band. Whereas, invoking on 
an Object that is using the Server Declared Priority Model, the server priority is used, 
as published in the IOR.

2.12.1 Scope of PriorityBandedConnectionPolicy

The PriorityBandedConnectionPolicy is applied on the client-side only, at the time 
of binding to a CORBA Object. However, the policy may be set from the client or 
server side. On the server, it may be applied at the time of POA creation, in which case 
the policy is client-exposed and is propagated from the server to the client in 
interoperable Object References. It is propagated in a PolicyValue in a 
TAG_POLICIES Profile Component, as specified by the CORBA QoS Policy 
Framework.

When an instance of PriorityBandedConnectionPolicy is propagated, the 
PolicyValue’s ptype has the value 
PRIORITY_BANDED_CONNECTION_POLICY_TYPE and the pvalue is a CDR 
encapsulation containing an RTCORBA::PriorityBands type, which is a sequence of 
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instances of RTCORBA::PriorityBand. Each RTCORBA::PriorityBand is in turn 
represented by a pair of RTCORBA::Priority values, which represent the low and high 
values for that band.

If the PriorityBandedConnectionPolicy is set on both the server and client-side, an 
attempt to bind will fail with an INV_POLICY system exception. The client 
application may use validate_connection to establish that this was the cause of 
binding failure and may set the value of its copy of the policy to an empty 
PriorityBands and attempt to rebind using just the configuration from the server-
provided copy of the policy.

2.12.2 Binding of Priority Banded Connection

Whether bands are configured from the client or server-side, the banded connection is 
always initiated from the client-side.

In order to allow the server-side ORB to identify the priority band that each connection 
is associated with, information on that connection’s band range is passed with first 
request on each banded connection. This is done by means of an 
RTCorbaPriorityRange service context:

// IDL
module IOP {

const ServiceId RTCorbaPriorityRange = 11;

};

The context_data contains the CDR encapsulation of two RTCORBA::Priority 
values (two short types.) The first indicates the lowest priority and the second the 
highest priority in the priority band handled by the connection.

Once a priority band has been associated with a connection it cannot be reconfigured 
during the life-time of the connection. If an ORB receives a second, or subsequent, 
RTCorbaPriorityRange service context containing a different priority band 
definition, then it shall raise a BAD_INV_ORDER system exception (with a 
Standard Minor Exception Code of 18). If the priority band is the same as the 
connection’s configuration, then processing shall proceed.

In case of an explicit bind (via validate_connection), this service context is passed 
on a request message for a ‘_bind_priority_band’ implicit operation. This implicit 
operation is defined for Real-time CORBA only at this time. It is possible that non-
Real-time ORB might receive such a request message. If so it is anticipated (but not 
prescribed) that it will reply with a BAD_OPERATION system exception with 
standard minor code 2. A future version of IIOP should formalize Real-time CORBA’s 
use of the ‘_bind_priority_band’ operation name in a GIOP Request message. Note 
that there is no API exposed for this implicit operation (unlike, for example, ‘_is_a’).
2-26 Real-time CORBA, v1.2 January 2005



2

When sending a ‘_bind_priority_band’ request, a Real-time ORB shall marshall no 
parameters and the object key of the object being bound to shall be used as the request 
‘target.’ The request shall be handled by the ORB, no servant implementation of this 
implicit operation will be invoked.

When a Real-time-ORB receives a _bind_priority_band Request it should allocate 
resources to the connection and configure those resources appropriately to the priority 
band indicated in the ServiceContext. Having done this the ORB shall send a 
“SUCCESS” Reply message. If the priority band passed is not well-formed; that is, it 
contains a negative number or the first value is higher than the second, then the ORB 
shall raise a BAD_PARAM system exception. If either of the priorities cannot be 
mapped onto native thread priorities; that is, to-native returns FALSE, then the ORB 
shall raise a DATA_CONVERSION system exception (with a Standard Minor 
Exception Code of 2). If the priority band is inconsistent with the ORB’s priority 
configuration, then the ORB shall raise an INV_POLICY system exception. If the 
server-side ORB cannot configure resources to support a well-formed band 
specification, then a NO_RESOURCES exception shall be returned.

A _bind_priority_band request message is sent on the connection for each band and 
must complete successfully; that is, yield a SUCCESS Reply message for all 
connections, before validate_connection returns success. If any one 
_bind_priority_band fails, then the entire banded connection binding fails. In this 
way, validate_connection sets up all the banded connections at time of binding.

If the service context is omitted on a _bind_priority_band request message, then the 
ORB shall raise a BAD_PARAM system exception.

A bind_priority_band is not performed in the case of an implicit bind, as it occurs at 
a time when a request is about to be sent on the connection representing the priority 
band that covers the current invocation priority. There is no point delaying the 
application request. Instead, the ‘RTCorbaPriorityRange’ service context is passed 
on this first invocation request.

Thus, the implicit binding of a banded connection has the behavior that each band 
connection is only set up the first time an invocation is made from the client with an  
invocation priority in that band. This behavior offers consistency: the first invocation 
made on each band incurs any latency and predictability cost associated with binding. 
If no invocations are ever made in the priority range of a given band, its connection 
will never be established.

2.13 PrivateConnectionPolicy

This policy allows a client to obtain a private transport connection, which will not be 
multiplexed (shared) with other client-server object connections. 
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// IDL 
module RTCORBA {

// Private Connection Policy

const CORBA::PolicyType 
PRIVATE_CONNECTION_POLICY_TYPE = 44;

local interface PrivateConnectionPolicy : CORBA::Policy {};

local interface RTORB {
...
PrivateConnectionPolicy create_private_connection_policy (
);

};

};

An instance of the PrivateConnectionPolicy is created with the 
create_private_connection_policy operation. The policy has no attributes.

Note that it is not possible to explicitly request a multiplexed connection. Whether 
multiplexing is appropriate or not is a protocol specific issue, and hence an ORB 
implementation issue. By not requesting a private connection the application indicates 
to the ORB that a multiplexed connection would be acceptable. It is up to the ORB 
implementation to make use of this indication. 

2.14 Invocation Timeout

Real-time CORBA uses the existing CORBA timeout policy, 
Messaging::RelativeRoundtripTimeoutPolicy, to allow a timeout to be set for the 
receipt of a reply to an invocation. The policy is used where it is set, to set a timeout 
in the client ORB. If a timeout expires, the server is not informed. Real-time CORBA 
does not require the policy to be propagated with the invocation, which the 
RelativeRoundtripTimeoutPolicy specification allows in support of message 
routers.

Note – The RelativeRoundtripTimeoutPolicy is specified in the Common Object 
Request Broker Architecture (CORBA) specification, CORBA Messaging chapter.

2.15 Protocol Configuration

Real-time CORBA uses two Policy types, based on a common protocol configuration 
framework, to enable the selection and configuration of protocols on the server and 
client side of the ORB.
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2.15.1 ServerProtocolPolicy 

The ServerProtocolPolicy policy type is used to select and configure 
communication protocols on the server-side of Real-time CORBA ORBs. 

// IDL
module RTCORBA {

local interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

local interface ServerProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

};

local interface RTORB {
...
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ServerProtocolPolicy is created with the 
create_server_protocol_policy operation. The attribute of the policy is initialized 
with the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified and, 
optionally, configured at the same time. The order of the Protocols in the 
ProtocolList indicates the order of preference for the use of the different protocols. 
Information regarding the protocols must be placed into IORs in that order, and the 
client should take that order as the default order of preference for choice of protocol to 
bind to the object via.

The type of protocol is indicated by an IOP::ProfileId (from the specification of the  
IOR), which is an unsigned long. This means that a protocol is defined as a specific 
pairing of an ORB protocol (such as GIOP) and a transport protocol (such as TCP.) 
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Hence IIOP would be selected, rather than GIOP plus TCP being selected separately. 
IIOP in particular is represented by the value TAG_INTERNET_IIOP (or the value 0, 
that it is defined as.)

A Protocol type contains a ProfileId plus two ProtocolProperties, one each for the 
ORB protocol and the transport protocol. 

The properties are provided to allow the configuration of protocol specific 
configurable parameters. Specific protocols have their own protocol configuration 
interface that inherits from the RTCORBA::ProtocolProperties interface. A nil 
reference for either ProtocolProperties indicates that the default configuration for 
that protocol should be used. (Each protocol will have an implementation specific 
default configuration, that may be overridden by applying the ServerProtocolPolicy 
at ORB scope. See the Policy Scope sub-section, below.)

//IDL 
module RTCORBA {

local interface TCPProtocolProperties : ProtocolProperties {
attribute long     send_buffer_size;
attribute long     recv_buffer_size;
attribute boolean  keep_alive;
attribute boolean  dont_route;
attribute boolean  no_delay;

};
local interface RTORB {

...
TCPProtocolProperties create_tcp_protocol_properties (

in long send_buffer_size,
in long recv_buffer_size,
in boolean keep_alive,
in boolean dont_route,
in boolean no_delay );

};

};

TCP is the only protocol that RT CORBA specifies a ProtocolProperties interface 
for. Instances of TCPProtocolProperties may be created by using the 
create_tcp_protocol_properties of RTORB. A ProtocolProperties interface is 
not specified for GIOP, as GIOP currently has no configurable properties. A 
GIOPProtocolProperties type will be defined in the future, if any configurable 
properties are added to GIOP.

ProtocolProperties should be defined for any other protocols usable with an RT 
CORBA implementation, but unless they are standardized in an OMG specification 
their name and contents will be implementation specific. ProtocolProperties for 
other protocols may be standardized in the future, and a ProtocolProperties 
interface should be specified in the standardization of any other protocol, if it is to be 
usable in a portable way with RT CORBA. 
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2.15.2 Scope of ServerProtocolPolicy

Applying a ServerProtocolPolicy to the creation of a POA controls the protocols 
that references created by that POA will support (and their configuration if non- nil 
ProtocolProperties are given.) If no ServerProtocolPolicy is given at POA 
creation, the POA will support the default protocols associated with the ORB that 
created it. (Note that supplying a ServerProtocolPolicy overrides, rather than 
supplementing or sub-setting, the default selection of protocols associated with the 
ORB.)

The ORB’s default protocols, and their order of preference, are implementation 
specific. The default may be overridden by applying a ServerProtocolPolicy at the 
ORB level. As a consequence, portable applications must override this Policy (and all 
other defaults) to ensure the same behavior between ORB implementations. 

Only one ServerProtocolPolicy should be included in a given PolicyList, and 
including more than one will result in an INV_POLICY system exception being 
raised. 

2.15.3 ClientProtocolPolicy 

The ClientProtocolPolicy policy type is used to configure the selection and 
configuration of communication protocols on the client-side of Real-time CORBA 
ORBs. It is defined in terms of the same RTCORBA::ProtocolProperties type as 
the ServerProtocolPolicy:

// IDL 
module RTCORBA {

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

local interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;

};

local interface RTORB {
...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ClientProtocolPolicy is created with the 
create_client_protocol_policy operation. The attribute of the policy is initialized 
with the parameter of the same name.
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When applied to a bind (implicit or explicit), the ClientProtocolPolicy indicates the 
protocols that may be used to make a connection to the specified object, in order of 
preference. If the ORB fails to make a connection because none of the protocols is 
available on the client ORB, an INV_POLICY system exception is raised. If one or 
more of the protocols is available but the ORB still fails to make a connection, a 
COMM_FAILURE system exception is raised. In both cases no binding is made. 

If it is necessary to know which protocol a binding was successfully made via, a single 
protocol should be passed into each of a succession of explicit binds until one of them 
is successful. 

If no ClientProtocolPolicy is provided, then the protocol selection is made by the 
ORB based on the target object’s available protocols, as described in its IOR, and the 
protocols supported by the client ORB. 

2.15.4 Scope of ClientProtocolPolicy

The ClientProtocolPolicy is applied on the client-side, at the time of binding to an 
Object Reference. However, the policy may be set on either the client or server-side. 
On the server-side, it may be applied at the time of POA creation, in which case the 
policy is client-exposed and is propagated from the server to the client in interoperable 
Object References. It is propagated in a PolicyValue in a TAG_POLICIES Profile 
Component, as specified by the CORBA QoS Policy Framework.

When an instance of ClientProtocolPolicy is propagated, the PolicyValue’s ptype 
has the value CLIENT_PROTOCOL_POLICY_TYPE and the pvalue is a CDR 
encapsulation containing an RTCORBA::ProtocolList, which is a sequence of 
instances of RTCORBA::Protocol. Each RTCORBA::Protocol is in turn represented 
by an IOP::ProfileId and two RTCORBA::ProtocolProperties representing the 
ORB and transport ProtocolProperties.

The on the wire representation of each ProtocolProperties type is protocol specific. 
The representation of the TCPProtocolProperties type is the CDR encoding of two 
longs followed by three booleans, to represent the send_buffer_size, 
recv_buffer_size, keep_alive, dont_route, and no_delay attributes respectively.

If the ClientProtocolPolicy is set on both the server and client-side, an attempt to 
bind will fail with an INV_POLICY system exception. The client application may 
use validate_connection to establish that this was the cause of binding failure and 
may set the value of its copy of the policy to an empty ProtocolList and attempt to 
re-bind using just the configuration from the server-provided copy of the policy.

2.15.5 Protocol Configuration Semantics

Note that the above API only allows policies to be set at POA creation time on the 
server-side, and object bind time on the client-side. No API is defined to allow 
(re)configuration of any policy after these times. 
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The protocol configuration selected at the time of POA creation is used to determine 
the server-side configuration that is to be used by the protocol in question for all 
connections from clients to objects that have references created by that POA. 

However, as the configuration semantics of a protocol (such as whether a particular 
property can be configured on a per-connection basis or only globally for that instance 
of the protocol) are protocol specific, the exact semantics of protocol configuration via 
ProtocolProperties are not specified by Real-time CORBA, and must be specified 
on a per-protocol basis. 

If a protocol offers a configurable property that can only be configured at some scope 
wider than that of the individual POA (say at the scope of the ORB instance), it can 
choose either to: 

• Change that property at the wider scope when a different value is requested for the 
creation of a new POA. This will ensure that the new POA gets the configuration 
requested, but will also affect the configuration of new and possibly existing 
connections made to other CORBA Objects via the same protocol. The exact scope 
and semantics of the property change must be given as part of the documentation of 
the ProtocolProperties interface for that protocol. 

• Not change the property, but instead raise an INV_POLICY exception and fail to 
create the new POA. In this way, the original value of the property is preserved for 
the existing references that use it. Once again, this behavior must be covered in the 
documentation of the ProtocolProperties interface for that protocol. 

Which of the two strategies a protocol uses is an implementation issue. 

2.16 Consolidated IDL

// IDL 
module IOP {

const ServiceId         RTCorbaPriority = 10;
const ServiceId         RTCorbaPriorityRange = 11;

};

//File: RTCORBA.idl
#ifndef _RT_CORBA_IDL_
#define _RT_CORBA_IDL_
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"

#include <orb.idl>
#include <iop.idl>
#include <TimeBase.idl>
#else
import ::CORBA;
import ::IOP;
import ::TimeBase;
#endif
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// IDL
module RTCORBA {

typedef short NativePriority;

typedef short Priority;

const Priority minPriority = 0;
const Priority maxPriority = 32767;

native PriorityMapping;
native PriorityTransform;

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority              lane_priority;
unsigned long  static_threads;
unsigned long  dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Priority Model Policy
const CORBA::PolicyType PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED, 
SERVER_DECLARED

};

local interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

local interface ThreadpoolPolicy : CORBA::Policy     {
readonly attribute ThreadpoolId threadpool;

};

local interface ProtocolProperties {};
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struct Protocol {
IOP::ProfileId          protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

local interface ServerProtocolPolicy : CORBA::Policy     {
readonly attribute ProtocolList protocols;

};

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

local interface ClientProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

};

// Private Connection Policy
const CORBA::PolicyType PRIVATE_CONNECTION_POLICY_TYPE = 44;

local interface PrivateConnectionPolicy : CORBA::Policy {};

local interface TCPProtocolProperties : ProtocolProperties {
attribute long     send_buffer_size;
attribute long     recv_buffer_size;
attribute boolean  keep_alive;
attribute boolean  dont_route;
attribute boolean  no_delay;

};

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority_bands;

};
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local interface Current : CORBA::Current {
attribute Priority the_priority;

};

local interface Mutex     {

void lock( );
void unlock( );
boolean try_lock ( in TimeBase::TimeT max_wait );
// if max_wait = 0 then return immediately

};

local interface RTORB {

Mutex create_mutex( );
void destroy_mutex( in Mutex the_mutex );

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

void destroy_threadpool ( in ThreadpoolId threadpool )
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy (
in PriorityModel priority_model,
in Priority server_priority

);
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);
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PriorityBandedConnectionPolicy
create_priority_banded_connection_policy (

in PriorityBands priority_bands
);
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);
PrivateConnectionPolicy create_private_connection_policy (
);

TCPProtocolProperties create_tcp_protocol_properties (
in long send_buffer_size,
in long recv_buffer_size,
in boolean keep_alive,
in boolean dont_route,
in boolean no_delay );

};

}; // End interface RTORB

}; // End module RTCORBA
#endif // _RT_CORBA_IDL_

//File: RTPortableServer.idl
#ifndef _RT_PORTABLE_SERVER_IDL_
#define _RT_PORTABLE_SERVER_IDL_
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"

#include <PortableServer.idl>
#include <RTCORBA.idl>
#else
import ::PortableServer;
import ::RTCORBA;
#endif

// IDL
module RTPortableServer {

#ifndef _PRE_3_0_COMPILER_
typeprefix RTCORBA "omg.org";

#endif

local interface POA : PortableServer::POA {
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Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

PortableServer::ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, WrongPolicy );

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, 
ObjectAlreadyActive, WrongPolicy );

};

};
#endif // _RT_PORTABLE_SERVER_IDL_
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Section I - Overview and Rationale

3.1 Overview 

3.1.1 Dynamic Scheduling

In real-time, we distinguish between two types of distributed systems based on how the 
system is used, and its impact on the underlying infrastructure.  There are static and 
dynamic distributed systems.

Static distributed systems are those where the processing load on the system is within 
known bounds such that a priori analysis can be performed. This means that the set of 
applications that the system could be running is known in advance, and that the 
workload that will be imposed on each application can be predicted within a known 
bound. Such systems often have a limited number of application configurations that 
can be executed, sometimes referred to as system modes. In these systems, a schedule 
for the execution of applications can be worked out in advance for each system mode, 
with a bounded amount of variation. As a result, the underlying infrastructure 
(operating system and middleware) need only be able to support executing that 
schedule.

One common approach to static systems is the use of operating system priorities to 
manage deadlines. Offline analysis is performed to map different application temporal 
requirements (such as frequency of execution) onto the available priorities. If the 
underlying infrastructure always respects these priorities, including preempting low 
priority threads when higher priority threads become eligible to run, and providing 
priority inheritance, this is sufficient.

Dynamic distributed systems, on the other hand, do not have a sufficiently predictable 
workload to allow this approach. It may be that the set of applications is either too 
large or not known in advance, the processing requirements for an application is too 
variable to be pre-planned, the arrival time of the inputs is too variable, or some other 
source of variability. For these types of systems, the underlying infrastructure must be 
able to satisfy real-time requirements in a dynamically changing environment.

Section V - Dynamic Scheduling Interfaces

“ThreadAction Interface” 3-27

“RTScheduling::Current Interface” 3-28

“RTScheduling::ResourceManager Interface” 3-35

“RTScheduling::DistributableThread Interface” 3-35

“RTScheduling::Scheduler Interface” 3-36
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This chapter is focused on systems in which the discipline for scheduling CORBA 
ORB and application threads (e.g., highest priority first, or earliest deadline first, or 
least laxity first) may be chosen by the application or system designers; and the 
scheduling input values needed by a scheduler to control execution (called scheduling 
parameter elements in this document) for that scheduling discipline (e.g., priority 
deadline, expected execution time) may be changed by the application dynamically 
(i.e., at any time). In contrast, Real-time CORBA 1.0 (ORBOS/99-02-12 with 
ORBOS/99-03-29) is focused on fixed priority systems.

3.1.2 Distributable Thread

This specification replaces the term and concept of an activity that appeared as a 
design and analysis suggestion in Real-time CORBA 1.0 with a specification for an 
end-to-end schedulable entity termed distributable thread.  Additionally, this 
specification’s introduction of the entity termed scheduling segment completes the 
replacement of the activity concept from Real-time CORBA 1.0.

3.2 Rationale

Dynamic scheduling is widely employed in real-time and distributed real-time 
computing systems. This specification extends Real-time CORBA 1.0 to encompass 
these dynamic systems as well as static systems.

In most real-time systems, especially distributed systems, cost-effectiveness demands 
that the computing system employ as much application-specific knowledge about the 
application and its execution environment as feasible. Much of this knowledge can be 
best captured in the scheduling discipline. This specification allows such application-
specific scheduling disciplines to be implemented by a pluggable scheduler.

An end-to-end execution model is essential to achieving end-to-end predictability of 
timeliness in a distributed real-time computing system. This is especially important in 
dynamically scheduled systems. The end-to-end execution model may be provided 
according to a formal standard specification (as herein), or as an ad hoc, custom-made 
creation by multiple different application programmers.

3.3 Notional Scheduling Service Architecture

This specification is based on a scheduling service architecture for a hypothetical or 
notional scheduling service plug-in. The specification does not require that scheduling 
service implementations conform to this notional architecture. It is presented only to 
provide an aid to understanding and describing the specification of a generic 
scheduling service framework.

The application interacts with the scheduler, passing information about its (the 
application’s) scheduling needs and its predicted use of system resources. The 
scheduler is responsible for determining how best to meet the schedule given that 
resource usage. The scheduler will use one or more scheduling disciplines, such as 
Earliest Deadline First or Maximum Urgency First, to achieve this goal.
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The application must also interact with the scheduler whenever there is a significant 
change in its scheduling needs or its predicted resource usage. In addition, the 
application must ensure that the scheduler is able to run as often as it needs to in order 
to maintain the schedule – the application should not, for example, disable interrupts or 
pre-emption for long periods of time, or create high priority threads that the scheduler 
does not know about.  If there are insufficient naturally occurring interaction points, 
the application must include some additional interactions with the scheduler just to 
guarantee that overruns and other errors can be detected in a timely way.

In a CORBA environment, the application can take an action (for example, making a 
CORBA request) that could impact the schedule. In the notional architecture, the ORB 
is responsible for interacting with the scheduler at these points, so that the scheduler 
can take into account the transitioning of control from one processing node to another.  
Thus, a set of specific ORB-scheduler interfaces are defined.

3.4 Goals of this Specification

Dynamic Scheduling generalizes the Real-time CORBA Base Architecture to meet the 
requirements of a much greater segment of the real-time computing field. There are 
three major generalizations:

• Any scheduling discipline may be employed.

• The scheduling parameter elements associated with the chosen discipline may be 
changed at any time during execution.

• The schedulable entity is a distributable thread that may span node boundaries, 
carrying its scheduling context among scheduler instances on those nodes.

While the Real-time CORBA 1.0 Scheduling Service interfaces have been replaced, 
this specification is backward compatible with the semantics of the Scheduling Service 
defined in the Real-time CORBA 1.0 specification. Compatible implementations of 
both specifications may be used in different ORB instances within the same system. 
Not all features of this specification can be used in such mixed systems.

This specification imposes no requirements on base real-time operating systems, other 
than the conventional ability to dispatch threads in a pre-emptive fashion. This 
specification imposes no additional constraints on the real-time operating system 
beyond those in Real-time CORBA 1.0.

3.5 Scope

This specification adds interfaces for a small set of well known scheduling disciplines 
to CORBA as optional compliance points. This specification does not attempt to 
provide all the interfaces necessary for interoperability of dynamically scheduled 
applications and schedulers in heterogeneous systems.  Rather, this specification 
provides a framework upon which schedulers can be built and lays the foundation for 
future full interoperability, and provides sufficient interfaces for applications to be 
built using the set of included scheduler disciplines.
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This specification defines a set of ORB/scheduler interfaces that will allow the 
development of portable (i.e., ORB implementation independent) schedulers. For the 
defined disciplines, this specification also specifies interfaces that will allow the 
development of portable (i.e., ORB and scheduler implementation independent) 
applications. The specification of portable application interfaces for other scheduling 
disciplines is left to future revisions.

Note that most scheduler implementations will extensively utilize features of the 
underlying operating system, and in some cases the networking software. This aspect 
of scheduler implementation is outside of the scope of this specification. Therefore, 
this specification does not provide the portability of schedulers except with respect to 
ORB interactions.

This specification does not provide interoperability between scheduling disciplines and 
thus not between different scheduler implementations. A scheduling framework is 
provided and the mechanism used for passing information between scheduler instances 
is provided via GIOP service contexts. However, the format and content of the 
information passed in the GIOP service contexts are not specified. On-the-wire 
interoperability between scheduling disciplines and the corresponding scheduler 
implementations is left to future specifications.

This specification provides an abstraction for distributed real-time programming (the 
distributable thread). This specification does not attempt to address more advanced 
issues such as fault tolerance, propagation of system information and control along the 
path of a distributable thread, etc. These facilities may be provided in a subsequent 
revision of this specification.

Section II - Concepts

3.6 Sequencing: Scheduling and Dispatching

Usually multiple execution entities (hereafter referred to as “threads”) contend for one 
or more exclusively accessed resources – notably processor cycles, but also others, 
both physical (e.g., communication paths) and logical (e.g., synchronizers). This 
contention must be resolved into a sequence of resource accesses (e.g., thread 
executions). In general, contention for all shared resources should be resolved in a 
consistent manner, although this is not yet common practice. For example, processors 
may be allocated by priority, networks by first come first served, locks by 
serializability, disks by head movement distance, etc. All resource contention can be 
resolved by one of two sequencing means: either scheduling or dispatching.

Thread scheduling is deciding in what order they all will execute. Each time thread 
scheduling is performed, a sequence is established – a schedule – for all threads ready 
at that time. Scheduling is performed statically (prior to execution time), by a person 
or a program, or dynamically (at execution time) by a user or the system software.

Thread dispatching is granting resource access (e.g., running the currently most 
eligible thread). When scheduling is employed, dispatching occurs in schedule order.
January 2005 Real-time CORBA:  Sequencing: Scheduling and Dispatching 3-5



3

Thread scheduling is not always necessary nor computationally feasible – dispatching 
alone may be sufficient.

Moreover, some actions are never threads and thus not schedulable – most commonly, 
interrupt service routines and certain OS services, which execute either when invoked 
or automatically as needed (other OS services are scheduled in concert with application 
entities).

Dispatching, when scheduling is not employed, establishes a thread resource access – 
e.g., execution sequence – one thread or non-schedulable action at a time.

The execution sequence may change at a sequencing point (either a scheduling point or 
a dispatching point), such as when a thread becomes ready or blocked, or a thread 
contends for a resource, or a thread time constraint is violated.

Contention for execution (and all other sequentially shared physical and logical 
resources) generally should be resolved according to an application-specific 
sequencing optimality criterion that seeks maximal usefulness to the system. In real-
time systems, that usefulness is based primarily on (but not limited to) timeliness and 
predictability of timeliness. (Other factors, not related to real-time, commonly found in 
sequencing criteria include relative importance, precedence constraints, resource 
ownership, etc.).

Sequencing optimality criteria are what define timeliness for a given system or 
application. Consequently, they also distinguish hard and soft real-time. Hard real-time 
has a single timeliness factor in its sequencing optimality criterion: always meet all 
hard deadlines. Soft real-time includes all other possible timeliness factors in 
sequencing (usually scheduling) optimality criteria – very common examples are 
“minimize mean weighted tardiness,” “minimize the number of missed deadlines 
according to importance,” and “minimize maximum tardiness.”

Informally, a property is predictable to the degree that it is known in advance. One end 
point of the predictability scale is determinism, in the sense that the property is known 
exactly in advance. The other end point of the predictability scale can be characterized 
as maximum entropy, in the sense that nothing at all is known in advance about the 
property. In stochastic real-time systems (which include hard real-time systems as a 
special case), one well-defined way to measure predictability is coefficient of variation 
Cν, which is defined as variance/mean2. The deterministic distribution, Cν = 0, and the 
extreme mixture of exponentials distribution is an example of a maximally non-
deterministic property whose Cν = ∞. 

In every real-time system, timeliness of each application and system action is 
somewhere on this predictability scale. Hard real-time systems have deterministic 
timeliness in the sense that they always meet all of their hard deadlines. Soft real-time 
systems have non-deterministic timeliness – e.g., characterized stochastically, such as 
minimizing either mean or maximum tardiness.

Given a sequencing optimality criterion, a sequencing discipline is selected or devised 
to satisfy it. There are a great many widely used sequencing disciplines; common 
examples in real-time computing systems include highest priority first (or just 
“priority”), earliest deadline first (EDF), and least laxity first (LLF). There may be 
more than one discipline that satisfies a given criterion – e.g., the hard real-time 
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criterion is satisfied by: the EDF and LLF disciplines (under specific conditions), 
among others; or appropriate assignment and manipulation of priorities.  Conversely, a 
specific discipline may be suitable for different criteria: EDF satisfies the hard real-
time criterion, and also satisfies the soft real-time criterion “minimize maximum 
tardiness” (among others); priorities can be used to satisfy either the hard or various 
soft real-time criteria.

When scheduling is employed, the sequencing discipline is usually called a scheduling 
discipline, and when only dispatching is employed, the discipline is usually called a 
dispatching rule.

A sequencing algorithm implements a sequencing discipline. In general, a discipline 
can be implemented by many different possible algorithms.

This specification uses the term scheduling to include the case when scheduling (and 
thus dispatching in schedule order) is employed, and the case when only dispatching is 
employed, because both of those cases involve selecting a sequencing optimality 
criterion and a corresponding discipline and algorithm.

3.7 Well Known Scheduling Disciplines

There are many widely used scheduling disciplines, but real-time computing theory 
and practice are focused on a small number of them, some of which are summarized 
below. The constructs in the IDL will become clear later in this specification.

3.7.1 Fixed Priority Scheduling

The fixed priority scheduling discipline provides for pre-emptive scheduling or 
dispatching of threads based on a simple numeric priority. When a higher priority 
thread is created or becomes unblocked, it preempts a lower priority executing thread 
and executes immediately.

module FP_Scheduling
{

struct SegmentSchedulingParameter
{

RTCORBA::Priority base_priority;
};

local interface SegmentSchedulingParameterPolicy
: CORBA::Policy

{
attribute SegmentSchedulingParameter value;

};

struct ResourceSchedulingParameter
{

RTCORBA::Priority resource_priority_ceiling;
};
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local interface ResourceSchedulingParameterPolicy
: CORBA::Policy

{
attribute ResourceSchedulingParameter value;

};

local interface Scheduler
: RTScheduling::Scheduler

{
SegmentSchedulingParameterPolicy

create_segment_scheduling_parameter
(in SegmentSchedulingParameter value);

ResourceSchedulingParameterPolicy
create_resource_scheduling_parameter

(in ResourceSchedulingParameter value);
};

};

Note that an analysis technique for scheduling fixed priority systems is Rate 
Monotonic Analysis (RMA). The rate monotonic analysis assigns fixed priorities to 
periodic threads based on their execution rates or periods – the thread having the 
highest rate (shortest period) is assigned the highest priority. Normally, the 
characteristics of all threads and their execution environment are known in advance, 
and rate monotonic scheduling is statically performed off-line. In this case, the Real-
time CORBA 1.0 Fixed Priority discipline can be employed. Often thread behavior or 
execution environment characteristics such as system loading vary with some dynamic 
parameter, time or date, operational status of supporting systems, etc. 

3.7.2 Earliest Deadline First (EDF)

The earliest deadline first discipline uses the execution completion deadline of the 
threads as the basis for their execution eligibility – a thread that has a shorter (closer) 
deadline is more eligible than one with a longer (later) deadline. In some cases, a 
thread’s deadline is constant during the thread’s lifetime, and in other cases it changes 
(for example, a thread’s deadlines may be nested). When EDF is used to meet 
deadlines (i.e., for hard real-time), it requires that all deadlines can be met, in which 
case it is most often employed statically. Other factors can be used in conjunction with 
deadlines to create enhanced EDF-like disciplines that always meet all deadlines if 
possible, and that shed or defer load when overloaded. When EDF is used to minimize 
maximum tardiness (i.e., for soft real-time), it may be employed either statically or 
dynamically. EDF can be employed either as a scheduling discipline or as a 
dispatching rule. 

module EDF_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
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long            importance;
};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

3.7.3 Least Laxity First (LLF)

A least laxity (or “time to go”) first discipline assigns execution eligibility based on 
laxity value, where

laxity = deadline - current time - estimated remaining computation time.

A thread with lower laxity is more eligible than one with higher laxity. An LLF 
discipline is sometimes used for environments where thread execution time 
requirements vary significantly. In such environments, a thread with a long execution 
time may be released prior to threads with less laxity becoming ready-to-run. The 
laxity estimate is updated as the thread execution duration estimate is updated at run 
time. An LLF discipline may specify that a thread with negative laxity should not 
(continue to) execute. Thus, LLF is primarily a dynamic discipline. LLF may be used 
either to meet deadlines (i.e., for hard real-time) or to maximize minimum lateness (or 
tardiness) (i.e., for soft real-time). LLF can be employed either as a scheduling 
discipline or a dispatching rule. 

module LLF_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
TimeBase::TimeT estimated_initial_execution_time;
long            importance;

};
// laxity = deadline
//          - {current time}
//          - (estimated_initial_execution_time –
//                          {time executed thus far})

local interface SchedulingParameterPolicy
: CORBA::Policy
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{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

3.7.4 Maximize Accrued Utility (MAU)

A maximize accrued utility discipline uses a utility function associated with each 
thread to establish a thread schedule; MAU cannot be used as a dispatching rule. Each 
function provides a mapping from that thread’s completion time to a utility value. For 
example, completing very close to but prior to the deadline may be most useful, while 
completing much earlier than the deadline may have less utility, and completing after 
the deadline may have zero or negative utility. Conventional deadlines are a special 
case of utility functions. MAU disciplines seek schedules that result in maximal 
accrued (e.g., summed) utility. Thus, MAU disciplines are intended for dynamic 
systems. 

module Max_Utility_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
long            importance;

};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};
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3.8 Distributed System Scheduling

Scheduling in a distributed system can be divided into four cases. Cases 1 through 3 
are the single-level scheduling cases. 

Case 1 is that scheduling occurs completely independently on each node, and 
application behaviors that involve more than a single node do not have trans-node end-
to-end timeliness requirements that are used by the node schedulers. That is the 
common non-real-time case. 

Case 2 is that scheduling occurs independently on each node, but an application 
behavior that involves more than one node propagates its end-to-end timeliness 
context, which is then used by each node’s scheduler while the behavior is active at 
that node. At each node, the distributable thread competes with the other threads at that 
node, according to its end-to-end needs. System-wide scheduling is coherent but not 
generally globally optimal. That is the distributed real-time case this specification 
explicitly addresses. 

Case 3 is that scheduling on each node is global in the sense that there is a logically 
singular system-wide scheduling algorithm instantiated on all nodes, and node 
instances of this algorithm interact to cooperatively schedule all nodes in a globally 
optimal way. This specification does not explicitly support case 3 because such 
scheduling is very difficult (intractable in general) from both the conceptual and 
implementation standpoints, but desires not to preclude it.  

Case 4 is all the multi-level scheduling cases: there is at least one level of “meta-
scheduling” above the case 1 or 2 node schedulers that seeks to improve global 
optimality by adaptively adjusting some combination of scheduling parameter 
elements, schedulable entity, scheduling contexts, scheduling algorithms, scheduling 
disciplines, and node load balancing. Case 4 includes sub-cases corresponding to cases 
2 and 3. This specification does not explicitly support case 4, but again, desires not to 
preclude it.

3.9 Distributable Thread

The defining characteristic of any real-time distributed computing system, whatever its 
programming model, is that the end-to-end timeliness (optimality and predictability of 
optimality, as defined in Section 3.6, “Sequencing: Scheduling and Dispatching,” on 
page 3-5) of trans-node application behaviors is acceptable to the application. 

In most cases, the fundamental requirement for achieving acceptable end-to-end 
timeliness is that a trans-node application behavior’s timeliness properties and 
parameters – time constraints, expected execution time, execution time received thus 
far, etc. – be explicitly employed for resource management (scheduling, etc.) 
consistently on each node involved in that application trans-node behavior. As stated in 
Section 3.8, “Distributed System Scheduling,” on page 3-11, “consistently” refers to 
distributed scheduling case 3 in this specification.
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In some static real-time distributed systems, these properties and parameters can be 
instantiated a priori; but in general, and in all dynamic real-time distributed systems, 
these properties must be propagated among corresponding computing node resource 
managers (e.g., in operating systems, Java virtual machines, and middleware). 

In real-time distributed CORBA systems, a trans-node application behavior’s end-to-
end timeliness (and potentially other) properties and parameters must be acquired from 
the client’s ORB, propagated with the invocation, and deposited in the servant’s ORB, 
when operation invocations occur; and similarly for any associated returns. 

For (at least) dynamic real-time CORBA systems, the fixed priority propagation 
mechanism in the Real-time CORBA 1.0 specification is insufficient – a trans-node 
application behavior abstraction is needed. A natural abstraction is suggested by 
CORBA’s native control flow programming model – a thread that can execute 
operations in objects without regard for physical node boundaries. In this specification, 
that programming model abstraction is termed a distributable thread (see Figure 3-1). 
In this figure, Objects A, B, and C may be running on either different processing nodes 
or within the same address space.

Figure 3-1 Control Flow in a Distributed Processing System

The distributable thread is the schedulable entity. Each distributable thread has a 
unique system-wide id. Each distributable thread may have one or more execution 
scheduling parameter elements – e.g., priority, time constraints such as deadlines or 
utility functions, importance – that specify the acceptable end-to-end timeliness for 
completing the sequential execution of operations in object instances that may reside 
on multiple physical nodes. The semantics of acceptability with respect to these end-
to-end timeliness parameters is defined by the application, in the context of the 
scheduling discipline being used. Execution of the distributable thread is governed by 
the scheduling parameter elements, on each node it visits (see Figure 3-2).
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Figure 3-2 Distributed Threads

A distributable thread can extend and retract its locus of execution points among 
operations in object instances across physical computing nodes by location-
independent invocations and (optionally) returns. Within each node, the flow of control 
is equivalent to normal local thread execution. 

The synchrony of a conventional two-way operation invocation (or RPC) programming 
model is often cited as a concurrency limitation. But that criticism does not apply to 
the distributable thread model. A distributable thread is a sequential abstraction, like a 
local thread. A distributable thread is always executing somewhere, while it is the most 
eligible there – it is not doing send/wait’s as with conventional operation invocations. 

Remote invocations and returns are scheduling events at both client and servant nodes. 
Each node’s processor is always executing the most eligible distributable thread while 
the others wait.

A distributable thread always has exactly one execution point (head) in the whole 
system. New distributable threads may be created, or sleeping ones awakened, when 
needed. An application or system may have multiple distributable threads. Multiple 
distributable threads execute concurrently and asynchronously, by default. 
Distributable threads synchronize through operation execution; the writers of each 
object control distributable thread concurrency in that object.

An exception that occurs anywhere along a distributable thread’s locus of execution 
can be forwarded to and raised at the head of that distributable thread. Subsequently, 
the exception propagates from the head back up the distributable thread to the nearest 
enclosing exception handler. 

Distributable thread-based programming models imply the need for a number of 
supporting facilities; these programming models can be differentiated by the facilities 
that they provide, and the approaches employed to provide them. Not all, or any, of 
these facilities are included in this specification. These supporting facilities include 
(but are not limited to) the following, which are not addressed in this specification: 

DT1

Object
A

Object
B

Object
C

Object
D

DT2

DT3

1-way
Invocation
January 2005 Real-time CORBA:  Distributable Thread 3-13



3

• Some asynchronous “happenings” (i.e., changes in system state) of interest to a 
distributable thread may have to be coordinated with current distributable thread 
execution. For example, a violated time constraint, or the failure of a node or 
network path over which a distributable thread is extended, might require 
notification of the distributable thread’s head  – as soon as possible, if the 
distributable thread is currently executing, and otherwise as soon as the 
distributable thread becomes the most eligible to execute. 

Certain other events that occur at the distributable thread’s head  – e.g., 
synchronous exceptions (e.g., traps) and asynchronous exceptions (e.g., time 
constraint expirations) – may require the distributable thread to execute a local 
exception handler and then return back up the invocation chain to execute one or 
more appropriate exception handlers at those places. After such an exception, the 
programming model could allow the distributable thread to either continue 
execution where the exception was initially delivered (a continuation model) or 
terminate, or the model could require that the distributable thread always terminate 
(a termination model). 

• Distributable thread control actions (e.g., suspend, resume, abort, time constraint 
change, etc.) may have to be propagated to, and carried out at, the distributed 
thread’s head. 

• Mechanisms may have to be provided to support maintaining correctness of 
distributed execution, and consistency of distributed data – in both cases, as defined 
by the application – for concurrent activities of one or more applications.

• The code that is responsible for detecting/suspecting failure for an appropriate set of 
nodes may require visibility to failures locally perceived by a distributable thread. 

All of these facilities generally would be required to be timely (e.g., subject to 
completion time constraints).

Section III - Overview of the Programming Model
This section presents an overview of the application programming model that is being 
provided.  Since the specification defines a scheduling framework, as well as a limited 
set of scheduling disciplines, this section deals with the concepts that apply across 
schedulers and scheduling disciplines.

3.10 Scheduler

In this specification a scheduler is realized as an extension to Real-time CORBA that 
utilizes the scheduling needs and resource requirements of one or more applications to 
manage the order of execution of those applications on the distributed nodes of a 
CORBA system.  A scheduler provides operations for applications to announce their 
requirements, which the scheduler takes into consideration when it affects the order in 
which threads are dispatched by the operating system.
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A scheduler will be run in response to specific application requests, such as defining 
new scheduling parameter elements, and in response to specific application actions, 
such as CORBA invocations. The latter will be implemented using the CORBA 
Portable Interceptor interfaces. The scheduler utilizes the information provided in these 
interfaces to manipulate which threads are most eligible for execution by the 
underlying operating system. This control is via whatever interfaces the operating 
system provides, which are outside of the scope of CORBA. Thus, although scheduler 
implementations could be independent of any particular ORB implementation, as long 
as the ORB conforms to this specification, the scheduler will be closely tied to the 
operating system. 

The scheduler architecture is based on the premise that a distributed application can be 
considered to be a set of distributable threads (see Section Distributable Thread), 
which may interact in a number of ways, sharing resources via mutexes, sharing 
transports, parent/offspring relationships, etc. The mechanisms of interaction are 
irrelevant to this specification.  

The scheduler architecture assumes that the problem of satisfying scheduling needs can 
be addressed by managing the allocation of resources to distributable threads. The 
distributable thread provides a vehicle for carrying scheduling information across the 
distributed system.

Distributable threads interact with the scheduler at specific scheduling- points, 
including application calls, locks and releases of resources, and at pre-defined 
locations within CORBA invocations. The latter are required because CORBA 
invocations are points at which the distributable thread may transition to another 
processor, and the scheduling information must be reinterpreted on the new processor.

3.10.1 Scheduler Characteristics

This specification does not assume a single scheduling discipline for Real-time 
CORBA. Schedulers are developed to implement a particular scheduling discipline or 
disciplines. Both available products and technical literature abound with examples of 
schedulers implementing various scheduling disciplines. This specification defines 
only the interface between the ORB/application and the scheduler, and is intended to 
foster the development of schedulers that are not dependent on any particular ORB 
(although a particular scheduler implementation may choose to take advantage of the 
features of a particular ORB).  Note that schedulers will likely be dependent on the 
underlying operating system, and this specification does not address these operating 
system interfaces, since they are outside of the scope of CORBA. 

This specification addresses schedulers that will optimize execution for the application 
scheduling needs on a processor-by-processor basis (see Section 3.8, “Distributed 
System Scheduling,” on page 3-11, case 2). That is, as the execution of an application 
distributable thread moves from processor to processor, its scheduling needs are 
carried along and honored by the scheduler on each processor. This does not preclude 
the development of schedulers that perform global optimization, but this specification 
does not specifically address that type of scheduler.
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The schedulers considered in relation to this specification will have in common 
processing stages where they acquire information about the demand for resources, an 
optional processing stage where they plan the processing schedule (when scheduling, 
as opposed to dispatching alone, is used), and a processing phase where they affect 
how threads are dispatched by the operating system. This specification does not 
impose any requirement on how the scheduler developer defines these processing 
stages. The specification does define the minimum set of scheduling points (points in 
time or code when the scheduler will execute).

This specification also provides the scheduler APIs for a small set of scheduling 
disciplines, including fixed priority, as defined in Real-time CORBA 1.0. This supports 
application portability for these disciplines.  

The current specification does not address full interoperability across scheduler vendor 
implementations. To achieve this, one would have to define the scheduling discipline, 
the scheduling parameter elements, and the service context that is used to propagate 
the scheduling characteristics of the application. The submitters believe that more 
implementation experience is needed before full interoperability is possible.  
Therefore, this specification only provides a complete API definition for a limited set 
of well-understood scheduling disciplines and does not define a standard service 
context for any scheduling disciplines. Future specifications will define standardized 
service contexts and the APIs for additional disciplines.

3.10.2 Scheduling Parameter Elements

This specification defines a scheduling parameter as a container of potentially multiple 
values called scheduling parameter elements. The scheduling parameter elements are 
the values needed by a scheduling discipline in order to make scheduling decisions for 
an application. A scheduling discipline may have no scheduling parameter elements, 
only one, or several; the number and meaning of the scheduling parameter elements is 
scheduling discipline specific. A single scheduling parameter, which may contain 
several scheduling parameter elements, is associated with an executing thread via the 
begin_scheduling_segment operation. A thread executing outside the context of a 
scheduling segment has no scheduling parameter associated with it and is scheduled by 
the native scheduling of the operating system, typically priority based. 

Some scheduling disciplines will acquire the information about application resource 
and scheduling requirements at system/application design time (static scheduling); 
these schedulers typically would load the resulting scheduling information into a data 
structure that is accessed at run time. Other schedulers are intended to react to dynamic 
runtime system demands (dynamic scheduling). These cases represent different 
scheduler “interaction styles.” The interaction style will depend on the scheduler 
implementation and, possibly, on the particular scheduling discipline. This 
specification provides a general scheduler interface that can be used by either style of 
scheduler interactions.

This specification also allows various types of interactions for static scheduling. The 
specific approach to be used will be discipline-specific. For example, the application 
may provide its scheduling parameter elements, and the associated names, in advance 
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so that the scheduler can store them internally; this could be done during some form of 
application initialization.  Alternatively, the application can provide scheduling 
parameter elements each time it invokes scheduler operations.

The specific information needed by a scheduler will depend on which discipline(s) it 
implements. For example, simple deadline scheduling may need only the thread’s 
deadline and the amount of CPU time that the thread will consume. Another discipline 
might utilize relative importance as one of its inputs. This specification has defined a 
standard interface for passing a set of scheduling discipline-specific information to a 
scheduler via the elements of a scheduling parameter. The definition of the structure, 
types, and the handling of these scheduling parameter elements is scheduling 
discipline-specific. The elements are only defined for the subset of scheduling 
disciplines provided in this specification.

3.10.3 Pluggable Scheduler and Interoperability

This specification provides a “pluggable” scheduler.  A particular ORB in the system 
may have any scheduler installed, or may have no scheduler.  If an ORB has a 
scheduler installed, all applications run on that ORB are “under the purview” of that 
scheduler.

Application components may interoperate, in the context of a particular scheduling 
discipline, as long as their ORBs have compatible schedulers installed (meaning that 
the schedulers implement the same discipline, and follow a CORBA standard for that 
discipline) and the scheduler implementations use a compatible service context. As 
noted above, the current specification does not define any standard service contexts for 
scheduler interoperability, although future revisions are anticipated in this area.  

A scheduler may choose to support multiple disciplines, but this specification does not 
address how different scheduling disciplines might interact. This may also be 
addressed in future revisions.  

3.10.4 Distributable Threads

A distributable thread (see Section 3.9, “Distributable Thread,” on page 3-11) is the 
fundamental abstraction of application execution in this specification. A distributable 
thread incorporates the sequence of actions associated with a user-defined portion of 
the application that may span multiple processing nodes, but that represents a single 
logical thread of control. Distributed applications will typically be constructed as 
several distributable threads that execute logically concurrently.

More precisely, a distributable thread is the locus of execution between points in the 
application that are significant to the application developer, and it carries the 
scheduling context of the application from node to node as control passes through the 
system via CORBA requests and replies. It might encompass part of the execution of a 
local (or native) thread or multiple threads executing in sequence on one or more 
processors. If it encompasses multiple threads, then it also encompasses the various 
phases; that is, “in-transit,” “static,” “active,” etc., which might occur as the locus of 
execution moves among threads.
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A distributable thread may have a scheduling parameter containing multiple element 
values associated with it. These scheduling parameter elements become the scheduling 
control factors for the distributable thread and are carried with the distributable thread 
via CORBA requests and replies. Scheduling parameter elements can be associated 
with a thread by the application invoking the begin_scheduling_segment or 
update_scheduling_segment operations (see Section 3.10.6, “Scheduling 
Segments, Parameter Elements, and Schedulable Entities,” on page 3-19). The 
application may call the spawn operation to create a distributable thread and a 
corresponding native thread in the current processor and associate scheduling 
parameter elements with it. 

A distributable thread has at most one head (execution point) at any moment in time.  
If there is a branch of control, as occurs with a CORBA oneway invocation, the 
originating distributable thread remains at the client and continues execution (as long 
as it remains the most eligible). A new distributable thread is implicitly created to 
process each oneway invocations.  

Each distributable thread has a globally unique id within the system, which can be 
accessed via the get_current_id operation.  The distributable thread id can be used to 
obtain a reference to a distributable thread, via the lookup operation. This reference 
can then be used to cancel that distributable thread, via the cancel operation. The 
cancel operation results in a CORBA::THREAD_CANCEL system exception 
being raised in the cancelled distributable thread.

3.10.5 Implicit Forking and Joining

Typically, an intrinsic part of any concurrency model is the semantics for the creation 
of new execution contexts, or forking, and the synchronization of multiple execution 
contexts, or joining.

Explicit forking is provided for in this specification by the spawn operation. Due to 
time constraints explicit joining was not provided by this specification.  Future 
finalizations and revision task forces are encouraged to provide for this capability.

Certain aspects of the core CORBA programming model and the programming model 
of various CORBA services introduce the implicit forking of distributable threads.  
One example in the core CORBA specification is oneway invocations if made with a 
synchronization scope of SYNC_NONE or SYNC_WITH_TRANSPORT.  This 
occurs because the distributable thread making the invocation is unblocked before the 
operation on the servant executes.  Applications may optionally associate an “implicit 
scheduling parameter” for a distributable thread that is associated with any implicitly 
created distributable threads created from that distributable thread.

When a distributable thread executing a scheduling segment implicitly forks another 
distributable thread, the forked distributable thread’s scheduling parameter is 
determined as follows:

• If the implicit scheduling parameter is set for the innermost scheduling segment of 
the forking distributable thread, then the ORB must use this value in implicitly 
forking any distributable threads.
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• Otherwise, the ORB must use the operative scheduling parameter of the innermost 
scheduling segment for the implicit forking of any distributable threads.

As with forking, there are certain aspects of the core CORBA programming model and 
the programming model of various CORBA services that introduce the implicit joining 
of distributable threads. An example of an implicit join is the polling mode introduced 
by asynchronous messaging. This occurs because the distributable thread calling the 
poll operation can wait to “join up with” the distributable thread that ran the operation 
on the servant to get the results of the asynchronous invocation.  Note that the initial 
asynchronous invocation call is an implicit fork that results in the distributable thread 
used to run the operation on the servant.

When a distributable thread executing a scheduling segment implicitly joins another 
distributable thread, there is neither inheritance nor propagation of either distributable 
thread’s scheduling parameter to the other distributable thread.

3.10.6 Scheduling Segments, Parameter Elements, and Schedulable Entities

In this specification, distributable threads consist of one or more (potentially nested) 
scheduling segments. Within a distributable thread, scheduling segments can be 
sequential and/or nested. Nesting creates scheduling scopes.

Each scheduling segment represents a sequence of control flow with which a particular 
set of scheduling parameter elements is associated. A scheduling segment is delineated 
by begin_scheduling_segment and end_scheduling_segment statements in the 
code. The application may use the segment name on the end statement, as an error 
check. The scheduling parameter associated with a distributable thread may be updated 
with a call to update_scheduling_segment.

At runtime, a scheduling segment has a single starting point, and a single ending point 
(although it could be coded with multiple possible ending points, during execution 
only one ending point can be invoked). Segments may span processor boundaries.  
This specification places no restrictions on the placement of 
begin_scheduling_segment’s and end_scheduling_segment’s; an 
end_scheduling_segment may occur on a different processor than the 
begin_scheduling_segment, and may even occur somewhere up the chain of 
CORBA requests.

As a distributable thread moves from object instance to object instance through 
CORBA invocations, it may extend (and possibly retract) itself through one or more 
processes or processors. When this happens, the distributable thread may be 
contending with a new set of distributable threads for resources.
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Figure 3-3 A Distributable Thread with Two Sequential Segments

Figure 3-3 illustrates a simple distributable thread which contains two sequential 
segments. The distributable thread begins in object instance A, with segment W, and 
traverses object instances B and C before returning to A, where the first segment ends 
and a new segment (Z) begins. Portable interceptors are invoked each time the 
distributable thread transitions to another object instance via a CORBA request (on 
both the client and servant side) and again as the distributable thread returns. Note that 
these object instances could be on different processors.

Suppose the scheduling discipline is Earliest Deadline First, which implies that the 
illustrated distributed thread must (implicitly) carry its deadline along as it progresses 
through the various processor environments. Further, assume that the scheduling 
discipline calls for scheduling segments that have missed their deadline to be 
terminated. This last condition implies that the scheduler must be maintaining a list of 
deadlines. The begin_scheduling_segment, update_scheduling_segment, and 
end_scheduling_segment operations serve to enter, update or remove deadlines, 
but the scheduler must also address what happens when a set deadline expires.
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Figure 3-4 A Distributable Thread Created by a Spawn Operation

Figure 3-4 illustrates the use of a spawn to create a distributable thread. Note that the 
spawn also serves as the beginning for the initial segment (W) of the distributable 
thread.

Some scheduling disciplines may support the nesting of scheduling segments, which 
permits independently developed software components to define their own scheduling 
segments. The component would create an additional scheduling segment by 
embedding one or more pair of calls to begin_scheduling_segment and 
end_scheduling_segment. The handling of unspecified parameter elements 
(defaulting) is discipline-specific. In some cases, unspecified elements will use the 
values from the next outer segment (if any). In other cases, predefined or application 
defined default values might be used.

Each begin_scheduling_segment provides a new set of scheduling parameter 
elements for the distributable thread. If the distributable thread is already in a segment, 
these new parameter elements will replace the current set until a matching 
end_scheduling_segment occurs. An end_scheduling_segment statement 
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causes the distributable thread to return to the previous scheduling parameter (if any).  
Thus, a distributable thread may contain multiple scheduling segments that are 
executed sequentially, each of which may contain nested segments. This specification 
does not place any limits on the level of nesting that a scheduling discipline will 
support.

Figure 3-5 Distributable Thread with Nested Segments

Figure 3-5 illustrates segment nesting.  In this case, segment X is nested within 
segment W.  At the point where segment X begins, the scheduling context of segment 
W is logically pushed onto a stack, and segment W’s scheduling parameter elements 
are used for the distributable thread.  When segment X ends, the distributable thread 
returns to the scheduling parameter elements for segment W.

In the case of EDF, all of these segments involve the requirement that they complete 
by some deadline, but they would probably be different deadlines. In the case of nested 
segments (W, X, and Y) the tightest deadline may come from any of the segments.
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A distributed thread executing in a single object instance may, at different times, have 
different deadlines. Note that where the distributed thread first executes in object 
instance B its deadline will be the deadline for segment W.  However, as soon as 
segment X begins, the deadline must be selected from the tighter of the outer (W) or 
inner (X) scheduling segment.

It is expected that each instance of the scheduler must monitor the time constraints of 
every distributed thread that is currently traversing its node.

A scheduling parameter element that is created in one object instance must be 
considered in other object instances as the distributed thread passes through them. In 
the illustration, the deadline established in object instance A must be considered with 
respect to all other deadlines that exist in the domain of object B, and similarly as the 
distributed thread extends to object C.

How a scheduler addresses distributed dynamic scheduling is implementation 
dependent, but it is likely that the features of the portable interceptor will be required.  
By requiring use of an interceptor that targets the scheduler for the outgoing and 
incoming sides of the connection at both the client and server sides, the scheduler can 
address these characteristics. A client-side outgoing interceptor can address moving the 
deadline compliance monitoring while the associated server side incoming interceptor 
can address the continuing deadline compliance monitoring and distributed thread 
scheduling with respect to the server side workload.

The application may also invoke the scheduler within a segment, either to allow the 
scheduler to notify the application if it has had a scheduling failure (such as a missed 
deadline), or to modify the current segment’s scheduling parameter elements. This is 
done via the update_scheduling_segment operation. The update operation allows 
the application to occasionally check in with the scheduler, and can also be used to 
change scheduling parameter elements dynamically, without creating a new segment. 
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Figure 3-6 Distributable Thread with Nested Segments

Figure 3-6 illustrates the remaining features of scheduling segments, namely the use of 
multi-level nesting, updates, and the flexible placement of ends. Note that there are 
two levels of nesting within segment W.  In this example, an 
update_scheduling_segment is called within segment Y.  Any exceptions for the 
distributable thread could be delivered at this point, rather than waiting for the next 
portable interceptor call or the end_scheduling_segment. In addition, the 
application could provide new scheduling parameter elements on the update, without 
returning to the next upper scheduling scope. Note also, this in this example, segment 
Y is begun in object instance C, but ended in object instance B, which was the invoker 
of object instance C.

The application can obtain a list of the current scheduling segment names, innermost 
scope first, via the current_scheduling_segment_names operation.

3.10.7 Scheduling Points

There are a number of scheduling points, which are points in time and/or code at which 
the scheduler is run and may result in an alteration of the current schedule.  These 
include all begins and ends, access to shared resources, and points at which control 
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transfers between processing nodes (i.e., CORBA requests). Because these scheduling 
points may result in schedule changes, they may also be a point at which dispatching 
occurs.

The following set of scheduling points is defined:

• Creation of a distributable thread (via begin_scheduling_segment or spawn).

• Termination or completion of a distributable thread.

• begin_scheduling_segment

• update_scheduling_segment

• end_scheduling_segment

• A CORBA operation invocation, specifically the request and reply interception 
points provided in the Portable Interceptor specification.

• Creation of a resource manager.

• Blocking on a request for a resource via a call to 
RTScheduling::ResourceManager::lock or 
RTScheduling::ResourceManager::try_lock.

• Unblocking as a result of the release of a resource via a call to 
RTScheduling::ResourceManager::unlock.

3.10.8 Schedule-Aware Resources

This specification permits the application to create a scheduler-aware resource locally 
via the create_resource_manager operation in a ResourceManager; these 
resources can have scheduling information associated with them via the 
set_scheduling_parameter operation.  For example, a servant thread could have a 
priority ceiling if the application were using fixed priority scheduling. The scheduler 
will run when these resources are locked or released, so that the scheduling discipline 
is maintained.

Any scheduling information associated with these resources is scheduling discipline-
specific.

3.10.9 Exceptions

This specification defines the following exceptions related to scheduling:

• CORBA::SCHEDULER_FAULT – this indicates that the scheduler itself has 
experienced an error.

• CORBA::SCHEDULE_FAILURE – this indicates that the distributable thread 
has violated the constraints of its scheduling parameter.  For example, this 
exception could occur when a deadline has been missed or a segment has used more 
than its allowed CPU time.
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• CORBA::THREAD_CANCELLED – indicates that the distributable thread 
receiving the exception has been cancelled. This may occur because a distributable 
thread cancels another distributable thread thereby causing the 
CORBA::THREAD_CANCELLED exception to get raised at the subsequent 
head of the cancelled distributable thread.

• RTScheduling:: UNSUPPORTED_SCHEDULING_DISCIPLINE – 
indicates that the scheduler was passed a scheduling parameter inappropriate for the 
scheduling discipline(s) supported by the current scheduler.

3.10.10 Summary

An application consists of one or more distributable threads (as well as possibly local 
processor threads that are not part of distributable threads). Each distributable thread 
will execute through one or a series of (distributed) scheduling segments, including 
some that may have nested segments. These segments represent regions of execution 
that have their own scheduling parameter elements. Within these scheduling segments, 
additional calls may be made to alter the scheduling parameter elements and/or to just 
allow the scheduler to run.

Distributable threads may evolve from application threads, due to a 
begin_scheduling_segment operation, a one-way operation, or be generated by 
spawn operations. Distributable threads may be cancelled by another distributable 
thread, and cancelled distributable threads will be notified of the cancellation via an 
exception.

These distributable threads may share local resources utilizing resource manager lock, 
try_lock, and unlock operations. These operations are schedule-respecting.  

Section IV - Scheduler Interoperability and Portability

3.11 Scheduler Interoperability 

A CORBA ORB supporting dynamic scheduling will interoperate with an ORB that 
does not support this capability. The scheduling parameter for a distributable thread is 
passed to the other ORB in the service context field and the other ORB can ignore 
them. 

An ORB conformant with Real-time CORBA 1.0 will interoperate with an ORB 
compliant with this specification in the functional sense (i.e., without regard to 
timeliness). An ORB compliant with this specification that has no scheduler installed is 
fully interoperable in both terms of functionality and timeliness. If a scheduler is 
installed, then timeliness characteristics of the resulting system will depend on the 
installed scheduler and its backwards compatibility with the Real-time CORBA 1.0 
fixed priority scheduling. 
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3.12 Scheduler Portability 

This specification addresses the issue of portability between the ORB and scheduler, 
and between the application and the scheduler. This specification provides that 
capability in that it makes the ORB/scheduler interfaces available to applications. 

3.13 Dynamic Scheduling Interoperation 

This specification does not address interoperation between different dynamic scheduler 
implementations or between different scheduling disciplines. 

Dynamic Scheduling is an extension of and modification to the RT CORBA 
specification. Application functions that are scheduled using the fixed priority methods 
will interoperate with dynamic scheduling tasks. This specification offers the 
application developer several options with regard to mixed mode operations. For 
example, a band of priorities can be reserved for dynamically scheduled activities.  
That band may be located at the high or low end of the priority range or it may be 
placed in the middle of the priority band. When activities have a priority higher than 
the dynamic scheduling band then dynamic scheduled activities will only run during 
what would otherwise be idle time. When dynamic scheduling is given top priority the 
scheduler resources might be dedicated to some activities while the remainder of the 
activities are dispatched during periods when the dynamically scheduled activities are 
not ready to execute.

Schedulers may be constructed so that dynamic scheduling systems can provide 
services to non-dynamically scheduled CORBA client applications. Requests from 
such a client would be treated as any processing that occurs without a scheduling 
parameter set. When dynamically scheduled clients make requests to non-dynamically 
scheduled servants then the added information carried in the service contexts is 
ignored. The request is valid but is not dynamically scheduled.

Section V - Dynamic Scheduling Interfaces

3.14 ThreadAction Interface

3.14.1 do Operation

3.14.1.1 IDL

module RTScheduling
{

…
local interface ThreadAction
{

void do(in CORBA::VoidData data);
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};
…
};

3.14.1.2 Semantics

The ThreadAction interface is used to provide an entry point for newly spawned 
distributable threads. The ThreadAction interface serves as a parent type for user 
implemented ThreadAction objects. The ThreadAction::do operation by default 
does nothing.  User written overrides of the do operation are expected execute the 
application’s thread-specific actions.

3.15 RTScheduling::Current Interface

The RTScheduling::Current interface is derived from RTCORBA::Current. An 
ORB that implements this specification returns a reference from a call to 
CORBA::ORB::resolve_initial_references with the “RTCurrent” value passed 
via the identifier parameter that can be narrowed to an RTScheduling::Current 
reference.

3.15.1 spawn Operation

3.15.1.1 IDL

module RTScheduling
{

…
local interface Current

: RTCORBA::Current
{

…
DistributableThread

spawn
(in ThreadAction      start,
 in unsigned long     stack_size,

// zero means use the O/S default
 in RTCORBA::Priority base_priority);

…
};
…

};
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3.15.1.2 Semantics

The spawn operation creates a new O/S thread and makes that thread a distributable 
thread with a stack size at least as large as the value passed in the stack_size 
parameter. The initial CORBA base priority is the value passed by the base_priority 
parameter. The new distributable thread calls the do operation on the ThreadAction 
object passed via the start parameter.

3.15.2 UNSUPPORTED_SCHEDULING_DISCIPLINE Exception

3.15.2.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
exception UNSUPPORTED_SCHEDULING_DISCIPLINE {};
…

};
…

};

3.15.2.2 Semantics

The UNSUPPORTED_SCHEDULING_DISCIPLINE exception is raised when 
a scheduling parameter argument isn’t appropriate for the installed scheduler instance.

3.15.3 begin_scheduling_segment Operation

3.15.3.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void begin_scheduling_segment

(in string        name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
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raises UNSUPPORTED_SCHEDULING_DISCIPLINE);
…

};
…

};

3.15.3.2 Semantics

The begin_scheduling_segment operation raises the 
RTScheduling::UNSUPPORTED_SCHEDULING_DISCIPLINE exception 
when the scheduling_parameter argument didn't have an appropriate value for the 
active scheduling discipline.

The begin_scheduling_segment operation raises the 
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed 
its schedule.

The begin_scheduling_segment operation raises the 
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal 
error.

The begin_scheduling_segment operation raises the 
CORBA::THREAD_CANCELLED exception when the distributable thread was 
cancelled.

The begin_scheduling_segment operation raises the CORBA::BAD_PARAM 
exception when the scheduling_parameter, any elements of the scheduling 
parameter, or the name parameter was invalid for the installed scheduler.

The begin_scheduling_segment operation begins a scheduling segment, and 
converts the currently executing thread into a distributable thread, if it is not already 
one. A scheduling segment is a window of execution where a distributable thread is 
executing a particular region of code. The scheduler conditions execution of a 
particular scheduling segment using the passed scheduling_parameter argument, 
until a begin_scheduling_segment. update_scheduling_segment, or 
end_scheduling_segment is encountered.

The name parameter provides identification for the region of code that comprises the 
scheduling segment. Some schedulers may support nesting of scheduling segments. If 
a scheduler does not support nesting of scheduling segments this operation raises 
CORBA::SCHEDULE_FAILURE.  

A scheduling_parameter contains elements that are a value or set of values 
appropriate for the active scheduling discipline. The scheduling_parameter used by 
the scheduler and set by the application.

The requirements for the “scheduling_parameter” and “name” parameters are 
dependant on both the scheduling discipline defined, and on the interaction style 
supported by the scheduler.  It is expected that at least one these parameters 
(“scheduling_parameter” or “name”) is a non-null argument.  
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In addition, the begin_scheduling_segment operation provides a scheduling point 
for the scheduler and gives the scheduler an opportunity to cancel a distributable 
thread by raising the CORBA::THREAD_CANCELLED exception while is 
executing in a scheduling segment.  

3.15.4 update_scheduling_segment Operation

3.15.4.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void update_scheduling_segment

(in string       name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
raises (UNSUPPORTED_SCHEDULING_DISCIPLINE);
…

};
…

};

3.15.4.2 Semantics

The update_scheduling_segment operation raises the 
RTScheduling::DistributableThread::UNSUPPORTED_SCHEDULING_
DISCIPLINE exception when the scheduling_parameter argument didn’t have an 
appropriate value for the active scheduling discipline.

The update_scheduling_segment operation raises the 
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed 
its schedule.

The update_scheduling_segment operation raises the 
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal 
error.

The update_scheduling_segment operation raises the 
CORBA::THREAD_CANCELLED exception when the distributable thread was 
cancelled.

The update_scheduling_segment operation raises the CORBA::BAD_PARAM 
exception when the scheduling_parameter or any elements of the scheduling 
parameter are invalid for the installed scheduler.
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The update_scheduling_segment operation provides the scheduler with a 
scheduling point and provides an opportunity for the scheduler to check for a 
scheduling failure. In addition, the update_scheduling_segment operation gives 
the scheduler an opportunity to raise the  CORBA::THREAD_CANCELLED 
exception within a distributable thread while it is executing in a scheduling segment.  

The update_scheduling_segment operation should only be called inside of a 
scheduling segment. A call to the update_scheduling_segment operation outside 
of a scheduling segment raises CORBA::SCHEDULE_FAILURE.  

Any non-null value passed via the scheduling_parameter parameter allows an 
application to request that a scheduler update the scheduling parameter or the implicit 
scheduling parameter, or both, associated with enclosing scheduling segment. A null 
value indicates to the scheduler that there it should not update scheduling parameter 
associated with the enclosing scheduling segment.

3.15.5 end_scheduling_segment Operation

3.15.5.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void end_scheduling_segment(in string name);
…

};
…

};

3.15.5.2 Semantics

The end_scheduling_segment operation raises the 
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed 
its schedule.

The end_scheduling_segment operation raises the 
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal 
error.

The end_scheduling_segment operation raises the 
CORBA::THREAD_CANCELLED exception when the distributable thread was 
cancelled.

The end_scheduling_segment operation raises the CORBA::BAD_PARAM 
exception when the name parameter was invalid for the installed scheduler.
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The end_scheduling_segment operation ends a scheduling segment. Each call to a 
end_scheduling_segment operation should match a call to 
begin_scheduling_segment made in the same distributable thread. If 
end_scheduling_segment is called in a distributable thread that does not have a 
matching call to begin_scheduling_segment raises 
CORBA::SCHEDULE_FAILURE.  

The end_scheduling_segment operation provides the scheduler with a scheduling 
point and provides an opportunity for the scheduler to check for a scheduling failure.  

If a non-null string is passed via the name parameter, then the scheduler can verify the 
name with the name passed in the corresponding begin_scheduling_segment call.  
If a null string is passed, then no verification takes place.

After an end_scheduling_segment operation, the distributable thread is either 
operating with the scheduling parameter of the next outermost scheduling segment 
scope. If this operation is performed at the outermost scope, the result is that the 
processing for that thread reverts back to the fixed priority scheduling where the active 
thread priority is the sole determinant of the threads eligibility for execution.

3.15.6 Id Related Operations

3.15.6.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…

IdType get_current_id();
// returns id of thread that is running

DistributableThread lookup(in IdType id);
// returns a null reference if
// the distributable thread is
// not known to the local scheduler

typedef sequence<octet> IdType;

readonly attribute IdType id;
// a globally unique id

…
};
…

};
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3.15.6.2 Semantics

Each distributable thread has a globally unique id within the system, which can be 
accessed via the get_current_id operation. The distributable thread id can be used to 
obtain a reference to a distributable thread, via the lookup operation. This reference 
can then be used to cancel that distributable thread, via the 
RTScheduling::DistributableThread::cancel operation. This cancel operation 
results in a CORBA::THREAD_CANCEL system exception being raised at the 
head of the cancelled distributable thread.

3.15.7 scheduling_parameter and implicit_scheduling_parameter Attributes

3.15.7.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
readonly attribute CORBA::Policy

scheduling_parameter;
readonly attribute CORBA::Policy

implicit_scheduling_parameter;
…

};
…

};

3.15.7.2 Semantics

Each distributable thread has a current scheduling policy if it is operating in a 
scheduling segment (and a null scheduling policy otherwise). The 
scheduling_parameter attribute returns the scheduling parameter for the innermost 
segment name.

The implicit_scheduling_parameter attribute returns the implicit scheduling 
parameter as last set by a begin_scheduling_segment or 
update_scheduling_segment call for the current distributable thread.

If the distributable thread is executing outside the context of the scheduling segment, 
then a null reference is returned from either of these attributes.
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3.15.8 current_scheduling_segment_names Attribute

3.15.8.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
typedef sequence<string> NameList;

readonly attribute NameList
current_scheduling_segment_names;

// Ordered from innermost segment name
// to outmost segment name

…
};
…

};

The current_scheduling_segment_names attribute returns a list of the current 
scheduling segment names, innermost scope first.

3.16 RTScheduling::ResourceManager Interface

3.16.1 IDL

module RTScheduling
{

…
local interface ResourceManager : RTCORBA::Mutex
{
};
…

};

3.17 RTScheduling::DistributableThread Interface

3.17.1 IDL

module RTScheduling
{

…
local interface DistributableThread
{
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void cancel();
// raises CORBA::OBJECT_NOT_FOUND if
// the distributable thread is
// not known to the scheduler

};
…

};

3.17.2 cancel Operation

The cancel operation causes the CORBA::THREAD_CANCELLED exception to 
be raised at the head of the distributable thread.  Note that while the 
DistributableThread is a local interface the head of the distributable thread may not 
be executing within the same address space as thread calling cancel.

3.18 RTScheduling::Scheduler Interface

The scheduler interface is a local interface with the semantics of an abstract interface.  
Its purpose is to delineate the core interface of a scheduler such that the Scheduler 
interface is used as a parent interface of a scheduler plug-in.

An object reference to the currently installed scheduler is obtained by calling 
CORBA::ORB::resolve_initial_references with the identifier parameter set to the 
value “RTScheduler.” If no scheduler is installed, a null object reference is returned.

3.18.1 Scheduler:: INCOMPATIBLE_SCHEDULING_DISCIPLINES 
Exception

3.18.1.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
exception INCOMPATIBLE_SCHEDULING_DISCIPLINES {};
…

};
…

};
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3.18.2 Scheduler::scheduling_policies Attribute

3.18.2.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
attribute CORBA::PolicyList

scheduling_policies;
…

};
…

};

3.18.3 Scheduler::poa_polices Attribute

3.18.3.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
readonly attribute CORBA::PolicyList poa_policies;
…

};
…

};

3.18.3.2 Semantics

The scheduling_policies attribute allows the ORB to request the list of POA 
policies that the scheduler requires to be applied to all POA’s associated with this 
ORB.  A null list is an acceptable result value.

3.18.4 Scheduler::scheduling_discipline_name Attribute

3.18.4.1 IDL

module RTScheduling
{

…
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local interface Scheduler
{

…
readonly attribute string

scheduling_discipline_name;
…

};
…

};

3.18.4.2 Semantics

A simple string containing the textual name of the scheduling discipline for use by 
both the ORB and application.

3.18.5 Scheduler::create_resource_manager Operation

3.18.5.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
ResourceManager

create
(in string        name,
 in CORBA::Policy scheduling_parameter);

…
};
…

};
// raises (CORBA::BAD_OPERATION, CORBA::BAD_PARAM, 

CORBA::NO_RESOURCES);

3.18.5.2 Semantics

Used by application developers to create a scheduler aware resource protection 
primitive, and associated a name with the resource.
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3.18.6 Scheduler::set_scheduling_parameter Operation

3.18.6.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
void set_scheduling_parameter

(inout PortableServer::Servant resource,
 in    string         name,
 in    CORBA::Policy  scheduling_parameter);

…
};
…

};

3.18.6.2 Semantics

The set_scheduling_parameter operation associates the supplied scheduling 
parameter and name parameter with the supplied servant resource.

The "resource" parameter is a required parameter.

The requirements for the "scheduling_parameter" and "name" parameters are 
scheduling discipline defined.  It is expected that at least one these parameters 
("scheduling_parameter" or "name") is a non-null argument.

This is useful for schedulers that associate some scheduling information with a shared 
resource. An example of this type of scheduler would be a fixed priority scheduler that 
uses some form of priority ceiling protocol.
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Compliance A
This appendix specifies the points that must be met for a compliant implementation of 
Real-time CORBA Base Architecture, Dynamic Scheduling, and any one of the 
schedulers listed in Chapter 3, “Dynamic Scheduling".

The Real-time CORBA Base Architecture is an extension of CORBA Core. Compliance 
can only be claimed in conjunction with compliance to CORBA Core. Note that 
compliance with the Real-time CORBA Base Architecture is not necessary for compliace 
to CORBA Core.

An ORB implementation compliant with the Real-time CORBA Base Architecture 
must implement all of Real-time CORBA, as defined in the Chapter 1, “Real-time 
CORBA Base Architecture" and Chapter 2, “Real-time CORBA Extensions". Hence 
there is a single mandatory compliance point.

Dynamic Scheduling, as defined in the Chapter 3, “Dynamic Scheduling", is a separate 
and optional compliance point. An ORB implementation compliant with the Real-time 
CORBA Base Architecture may or may not choose to offer an implementation of the 
Dynamic Scheduling.

While, the implementation of Dynamic Scheduling is optional for implementations of 
the Real-time CORBA Base Architecture the opposite is not true.  For an ORB to 
comply with Dynamic Scheduling the ORB must conform to the Real-time CORBA 
Base Architecture specification.  In particular, an ORB that conforms to Dynamic 
Scheduling must implement the fixed priority scheduling of the Real-time CORBA 
Base Architecture when no scheduler is installed.

The implementation of the basic Dynamic Scheduling infrastructure (i.e., the 
implementation of all interfaces and associated semantics not associated with a 
particular scheduler) is the most basic form of compliance with Dynamic Scheduling.

Implementing a scheduler that conforms to one of the scheduling disciplines in this 
specification (i.e., the scheduler implements of all interfaces and associated semantics 
for that scheduling discipline) is an optional and separate compliance point for a 
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conforming implementation of the basic Dynamic Scheduling infrastructure.  Nesting 
of scheduling segments is not a required feature for the compliance of a scheduler that 
implements any one of the specified scheduling disciplines in this specification.
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